Loading…

Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding

Stiffness adjustment is an important feature of human arm control. The adaptive variable impedance control can adapt to the robotic stiffness, but may result in a large overshoot. In this paper, nonlinear impedance control is proposed for collaborative robotic grinding, where nonlinear force feedbac...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Technological sciences 2023-07, Vol.66 (7), p.1928-1936
Main Authors: Han, FengTao, Tam, SikYuen, Cao, ZhiHong, Zhao, XingWei, Tao, Bo, Ding, Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-c7e6c56603741c53ca1047014c775db33fbcdbcc7df20a40492427f98d0f94043
container_end_page 1936
container_issue 7
container_start_page 1928
container_title Science China. Technological sciences
container_volume 66
creator Han, FengTao
Tam, SikYuen
Cao, ZhiHong
Zhao, XingWei
Tao, Bo
Ding, Han
description Stiffness adjustment is an important feature of human arm control. The adaptive variable impedance control can adapt to the robotic stiffness, but may result in a large overshoot. In this paper, nonlinear impedance control is proposed for collaborative robotic grinding, where nonlinear force feedback is designed to compensate for the nonlinear stiffness of the environment. Thus, the interaction system can be linearization to ensure the system stability. Moreover, a target trajectory adaptation strategy is studied to ensure the force tracking requirement. Then, switching law between trajectory tracking and force tracking is proposed when the robot performs a complex grinding task. The stability of the switch control as well as the trajectory adaptation law is proved. Experiments are conducted in a robotic grinding test rig, where the robot is used to grind a turbine blade. Experimental results show that the nonlinear impedance control can obtain stable grinding force, and have better grinding quality than the linear impedance control.
doi_str_mv 10.1007/s11431-022-2418-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835527872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835527872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c7e6c56603741c53ca1047014c775db33fbcdbcc7df20a40492427f98d0f94043</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmyW52j1L8gqIXPXgK2Wy2pmyTmqRK_70pK3hyLvPBO-8MD0KXQK-BUnmTAAQHQhkjTEBDxAmaQVO3BFpKT0tdS0EkZ3COFiltaAnetBTEDL0_Bz86b3XEbruzvfbGYhN8jmHE3y5_4Bz1xpoc4gHrXu-yzi54PIRYZOOouxDL5MviGLqQncHr6Hzv_PoCnQ16THbxm-fo7f7udflIVi8PT8vbFTEcIBMjbW2quqZcCjAVNxqokOU3I2XVd5wPnek7Y2Q_MKoFFS0TTA5t09OhLS2fo6vJdxfD596mrDZhH305qVjDq4rJRrKigkllYkgp2kHtotvqeFBA1RGimiCqAlEdIaqjM5t2UtH6tY1_zv8v_QCe_HT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835527872</pqid></control><display><type>article</type><title>Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding</title><source>Springer Link</source><creator>Han, FengTao ; Tam, SikYuen ; Cao, ZhiHong ; Zhao, XingWei ; Tao, Bo ; Ding, Han</creator><creatorcontrib>Han, FengTao ; Tam, SikYuen ; Cao, ZhiHong ; Zhao, XingWei ; Tao, Bo ; Ding, Han</creatorcontrib><description>Stiffness adjustment is an important feature of human arm control. The adaptive variable impedance control can adapt to the robotic stiffness, but may result in a large overshoot. In this paper, nonlinear impedance control is proposed for collaborative robotic grinding, where nonlinear force feedback is designed to compensate for the nonlinear stiffness of the environment. Thus, the interaction system can be linearization to ensure the system stability. Moreover, a target trajectory adaptation strategy is studied to ensure the force tracking requirement. Then, switching law between trajectory tracking and force tracking is proposed when the robot performs a complex grinding task. The stability of the switch control as well as the trajectory adaptation law is proved. Experiments are conducted in a robotic grinding test rig, where the robot is used to grind a turbine blade. Experimental results show that the nonlinear impedance control can obtain stable grinding force, and have better grinding quality than the linear impedance control.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-022-2418-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Adaptation ; Adaptive control ; Collaboration ; Engineering ; Grinding ; Impedance ; Nonlinear control ; Robotics ; Robots ; Stiffness ; Systems stability ; Tracking ; Trajectory control ; Turbine blades</subject><ispartof>Science China. Technological sciences, 2023-07, Vol.66 (7), p.1928-1936</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-c7e6c56603741c53ca1047014c775db33fbcdbcc7df20a40492427f98d0f94043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Han, FengTao</creatorcontrib><creatorcontrib>Tam, SikYuen</creatorcontrib><creatorcontrib>Cao, ZhiHong</creatorcontrib><creatorcontrib>Zhao, XingWei</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Ding, Han</creatorcontrib><title>Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Stiffness adjustment is an important feature of human arm control. The adaptive variable impedance control can adapt to the robotic stiffness, but may result in a large overshoot. In this paper, nonlinear impedance control is proposed for collaborative robotic grinding, where nonlinear force feedback is designed to compensate for the nonlinear stiffness of the environment. Thus, the interaction system can be linearization to ensure the system stability. Moreover, a target trajectory adaptation strategy is studied to ensure the force tracking requirement. Then, switching law between trajectory tracking and force tracking is proposed when the robot performs a complex grinding task. The stability of the switch control as well as the trajectory adaptation law is proved. Experiments are conducted in a robotic grinding test rig, where the robot is used to grind a turbine blade. Experimental results show that the nonlinear impedance control can obtain stable grinding force, and have better grinding quality than the linear impedance control.</description><subject>Adaptation</subject><subject>Adaptive control</subject><subject>Collaboration</subject><subject>Engineering</subject><subject>Grinding</subject><subject>Impedance</subject><subject>Nonlinear control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Systems stability</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Turbine blades</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmyW52j1L8gqIXPXgK2Wy2pmyTmqRK_70pK3hyLvPBO-8MD0KXQK-BUnmTAAQHQhkjTEBDxAmaQVO3BFpKT0tdS0EkZ3COFiltaAnetBTEDL0_Bz86b3XEbruzvfbGYhN8jmHE3y5_4Bz1xpoc4gHrXu-yzi54PIRYZOOouxDL5MviGLqQncHr6Hzv_PoCnQ16THbxm-fo7f7udflIVi8PT8vbFTEcIBMjbW2quqZcCjAVNxqokOU3I2XVd5wPnek7Y2Q_MKoFFS0TTA5t09OhLS2fo6vJdxfD596mrDZhH305qVjDq4rJRrKigkllYkgp2kHtotvqeFBA1RGimiCqAlEdIaqjM5t2UtH6tY1_zv8v_QCe_HT0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Han, FengTao</creator><creator>Tam, SikYuen</creator><creator>Cao, ZhiHong</creator><creator>Zhao, XingWei</creator><creator>Tao, Bo</creator><creator>Ding, Han</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding</title><author>Han, FengTao ; Tam, SikYuen ; Cao, ZhiHong ; Zhao, XingWei ; Tao, Bo ; Ding, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c7e6c56603741c53ca1047014c775db33fbcdbcc7df20a40492427f98d0f94043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptive control</topic><topic>Collaboration</topic><topic>Engineering</topic><topic>Grinding</topic><topic>Impedance</topic><topic>Nonlinear control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Systems stability</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Turbine blades</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, FengTao</creatorcontrib><creatorcontrib>Tam, SikYuen</creatorcontrib><creatorcontrib>Cao, ZhiHong</creatorcontrib><creatorcontrib>Zhao, XingWei</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Ding, Han</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, FengTao</au><au>Tam, SikYuen</au><au>Cao, ZhiHong</au><au>Zhao, XingWei</au><au>Tao, Bo</au><au>Ding, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>66</volume><issue>7</issue><spage>1928</spage><epage>1936</epage><pages>1928-1936</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Stiffness adjustment is an important feature of human arm control. The adaptive variable impedance control can adapt to the robotic stiffness, but may result in a large overshoot. In this paper, nonlinear impedance control is proposed for collaborative robotic grinding, where nonlinear force feedback is designed to compensate for the nonlinear stiffness of the environment. Thus, the interaction system can be linearization to ensure the system stability. Moreover, a target trajectory adaptation strategy is studied to ensure the force tracking requirement. Then, switching law between trajectory tracking and force tracking is proposed when the robot performs a complex grinding task. The stability of the switch control as well as the trajectory adaptation law is proved. Experiments are conducted in a robotic grinding test rig, where the robot is used to grind a turbine blade. Experimental results show that the nonlinear impedance control can obtain stable grinding force, and have better grinding quality than the linear impedance control.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-022-2418-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2023-07, Vol.66 (7), p.1928-1936
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2835527872
source Springer Link
subjects Adaptation
Adaptive control
Collaboration
Engineering
Grinding
Impedance
Nonlinear control
Robotics
Robots
Stiffness
Systems stability
Tracking
Trajectory control
Turbine blades
title Nonlinear impedance control with trajectory adaptation for collaborative robotic grinding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-30T05%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20impedance%20control%20with%20trajectory%20adaptation%20for%20collaborative%20robotic%20grinding&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Han,%20FengTao&rft.date=2023-07-01&rft.volume=66&rft.issue=7&rft.spage=1928&rft.epage=1936&rft.pages=1928-1936&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-022-2418-4&rft_dat=%3Cproquest_cross%3E2835527872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-c7e6c56603741c53ca1047014c775db33fbcdbcc7df20a40492427f98d0f94043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835527872&rft_id=info:pmid/&rfr_iscdi=true