Loading…

Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia

The electrochemical nitrite reduction reaction provides an alternative approach to offer sustainable ammonia source routes for repairing imbalances in the global nitrogen cycle. In this work, electrocatalysis is combined with enzymatic catalysis to provide an efficient and clean process for recovera...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-05, Vol.13 (20), p.n/a
Main Authors: Zhu, Xuefang, Fan, Xing, Lin, Haiping, Li, Shuni, Zhai, Quanguo, Jiang, Yucheng, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3
cites cdi_FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced energy materials
container_volume 13
creator Zhu, Xuefang
Fan, Xing
Lin, Haiping
Li, Shuni
Zhai, Quanguo
Jiang, Yucheng
Chen, Yu
description The electrochemical nitrite reduction reaction provides an alternative approach to offer sustainable ammonia source routes for repairing imbalances in the global nitrogen cycle. In this work, electrocatalysis is combined with enzymatic catalysis to provide an efficient and clean process for recoverable ammonia production. NO2− is reduced to NH3 by electroenzymatic cascade reduction reaction on a bioconjugate, in which 1‐butyl‐3‐methylimidazolium bromide (ILBMB) modified chloroperoxidase (CPO) is fixed on polyethyleneimine (PEI) modified multi‐walled carbon nanotubes (MWCNT) to from bioconjugate (CPO‐ILBMB/MWCNT‐PEI). 15N and 14N isotope labeling reveal that the NH3 species is derived from NO2− reduction. Density functional theory calculations identify that the FeII species in heme center of CPO serve as the key active site for NO2− reduction. The amino groups derived from MWCNT‐PEI not only serve as a bridge to covalently immobilize CPO but also enrich the NO2− ion at electrode/solution interface through electrostatic interactions. The low energy barrier of NO2− reduction and low adsorption free energy of the intermediate result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in pH 5.0 solution. The highly efficient electroenzymatic reaction ensurespromising applications in the conversion of NO2− to NH3. Electrocatalysis combine with enzymatic catalysis to provide an efficient and clean process for nitrite reduction. The NO2– is effectively reduced to ammonia at a CPO‐ILBMB/MWCNT‐PEI bioconjugate by electroenzymatic cascade catalysis. The low energy barrier and low adsorption‐free energy result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in near‐neutral solution.
doi_str_mv 10.1002/aenm.202300669
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818599811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818599811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxYMoWGqvnhc8p-5HsskeS0mtUCtIPS_bzcRuSbJ1d6vEv96EiB6dy_wY3psZXhTdEjwnGNN7BW0zp5gyjDkXF9GEcJLEPE_w5S8zeh3NvD_ivhJBMGOTCNbm7VB3qKgqow20ARU16OAstF9do4LRaKm8ViWgFyjPOhjb9qRGWFmHdgdAS9t-gPPDyFZoa4IzAVCwaNE0tjXqJrqqVO1h9tOn0euq2C3X8eb54XG52MSakUzEw5_JXmnOkowqXGU6JyxNRIIpT7HIWMq5woKUUGlFNSn3XJUUSkJxnuI9sGl0N-49Oft-Bh_k0Z5d25-UNCd5KkROSK-ajyrtrPcOKnlyplGukwTLIU05pCl_0-wNYjR8mhq6f9RyUWyf_rzf_SJ4WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818599811</pqid></control><display><type>article</type><title>Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia</title><source>Wiley</source><creator>Zhu, Xuefang ; Fan, Xing ; Lin, Haiping ; Li, Shuni ; Zhai, Quanguo ; Jiang, Yucheng ; Chen, Yu</creator><creatorcontrib>Zhu, Xuefang ; Fan, Xing ; Lin, Haiping ; Li, Shuni ; Zhai, Quanguo ; Jiang, Yucheng ; Chen, Yu</creatorcontrib><description>The electrochemical nitrite reduction reaction provides an alternative approach to offer sustainable ammonia source routes for repairing imbalances in the global nitrogen cycle. In this work, electrocatalysis is combined with enzymatic catalysis to provide an efficient and clean process for recoverable ammonia production. NO2− is reduced to NH3 by electroenzymatic cascade reduction reaction on a bioconjugate, in which 1‐butyl‐3‐methylimidazolium bromide (ILBMB) modified chloroperoxidase (CPO) is fixed on polyethyleneimine (PEI) modified multi‐walled carbon nanotubes (MWCNT) to from bioconjugate (CPO‐ILBMB/MWCNT‐PEI). 15N and 14N isotope labeling reveal that the NH3 species is derived from NO2− reduction. Density functional theory calculations identify that the FeII species in heme center of CPO serve as the key active site for NO2− reduction. The amino groups derived from MWCNT‐PEI not only serve as a bridge to covalently immobilize CPO but also enrich the NO2− ion at electrode/solution interface through electrostatic interactions. The low energy barrier of NO2− reduction and low adsorption free energy of the intermediate result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in pH 5.0 solution. The highly efficient electroenzymatic reaction ensurespromising applications in the conversion of NO2− to NH3. Electrocatalysis combine with enzymatic catalysis to provide an efficient and clean process for nitrite reduction. The NO2– is effectively reduced to ammonia at a CPO‐ILBMB/MWCNT‐PEI bioconjugate by electroenzymatic cascade catalysis. The low energy barrier and low adsorption‐free energy result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in near‐neutral solution.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300669</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; ammonia synthesis ; Chemical reduction ; chloroperoxidase ; Conversion ; Density functional theory ; electroenzymatic cascade reduction reaction ; Free energy ; Multi wall carbon nanotubes ; nitrate reduction reaction ; Nitrogen dioxide ; Nitrogen isotopes ; Polyethyleneimine ; selectivity</subject><ispartof>Advanced energy materials, 2023-05, Vol.13 (20), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3</citedby><cites>FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3</cites><orcidid>0000-0002-9936-3893 ; 0000-0001-9545-6761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300669$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300669$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Zhu, Xuefang</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Zhai, Quanguo</creatorcontrib><creatorcontrib>Jiang, Yucheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia</title><title>Advanced energy materials</title><description>The electrochemical nitrite reduction reaction provides an alternative approach to offer sustainable ammonia source routes for repairing imbalances in the global nitrogen cycle. In this work, electrocatalysis is combined with enzymatic catalysis to provide an efficient and clean process for recoverable ammonia production. NO2− is reduced to NH3 by electroenzymatic cascade reduction reaction on a bioconjugate, in which 1‐butyl‐3‐methylimidazolium bromide (ILBMB) modified chloroperoxidase (CPO) is fixed on polyethyleneimine (PEI) modified multi‐walled carbon nanotubes (MWCNT) to from bioconjugate (CPO‐ILBMB/MWCNT‐PEI). 15N and 14N isotope labeling reveal that the NH3 species is derived from NO2− reduction. Density functional theory calculations identify that the FeII species in heme center of CPO serve as the key active site for NO2− reduction. The amino groups derived from MWCNT‐PEI not only serve as a bridge to covalently immobilize CPO but also enrich the NO2− ion at electrode/solution interface through electrostatic interactions. The low energy barrier of NO2− reduction and low adsorption free energy of the intermediate result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in pH 5.0 solution. The highly efficient electroenzymatic reaction ensurespromising applications in the conversion of NO2− to NH3. Electrocatalysis combine with enzymatic catalysis to provide an efficient and clean process for nitrite reduction. The NO2– is effectively reduced to ammonia at a CPO‐ILBMB/MWCNT‐PEI bioconjugate by electroenzymatic cascade catalysis. The low energy barrier and low adsorption‐free energy result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in near‐neutral solution.</description><subject>Ammonia</subject><subject>ammonia synthesis</subject><subject>Chemical reduction</subject><subject>chloroperoxidase</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>electroenzymatic cascade reduction reaction</subject><subject>Free energy</subject><subject>Multi wall carbon nanotubes</subject><subject>nitrate reduction reaction</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen isotopes</subject><subject>Polyethyleneimine</subject><subject>selectivity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxYMoWGqvnhc8p-5HsskeS0mtUCtIPS_bzcRuSbJ1d6vEv96EiB6dy_wY3psZXhTdEjwnGNN7BW0zp5gyjDkXF9GEcJLEPE_w5S8zeh3NvD_ivhJBMGOTCNbm7VB3qKgqow20ARU16OAstF9do4LRaKm8ViWgFyjPOhjb9qRGWFmHdgdAS9t-gPPDyFZoa4IzAVCwaNE0tjXqJrqqVO1h9tOn0euq2C3X8eb54XG52MSakUzEw5_JXmnOkowqXGU6JyxNRIIpT7HIWMq5woKUUGlFNSn3XJUUSkJxnuI9sGl0N-49Oft-Bh_k0Z5d25-UNCd5KkROSK-ajyrtrPcOKnlyplGukwTLIU05pCl_0-wNYjR8mhq6f9RyUWyf_rzf_SJ4WQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhu, Xuefang</creator><creator>Fan, Xing</creator><creator>Lin, Haiping</creator><creator>Li, Shuni</creator><creator>Zhai, Quanguo</creator><creator>Jiang, Yucheng</creator><creator>Chen, Yu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9936-3893</orcidid><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid></search><sort><creationdate>20230501</creationdate><title>Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia</title><author>Zhu, Xuefang ; Fan, Xing ; Lin, Haiping ; Li, Shuni ; Zhai, Quanguo ; Jiang, Yucheng ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>ammonia synthesis</topic><topic>Chemical reduction</topic><topic>chloroperoxidase</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>electroenzymatic cascade reduction reaction</topic><topic>Free energy</topic><topic>Multi wall carbon nanotubes</topic><topic>nitrate reduction reaction</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen isotopes</topic><topic>Polyethyleneimine</topic><topic>selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xuefang</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Zhai, Quanguo</creatorcontrib><creatorcontrib>Jiang, Yucheng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xuefang</au><au>Fan, Xing</au><au>Lin, Haiping</au><au>Li, Shuni</au><au>Zhai, Quanguo</au><au>Jiang, Yucheng</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia</atitle><jtitle>Advanced energy materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>13</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The electrochemical nitrite reduction reaction provides an alternative approach to offer sustainable ammonia source routes for repairing imbalances in the global nitrogen cycle. In this work, electrocatalysis is combined with enzymatic catalysis to provide an efficient and clean process for recoverable ammonia production. NO2− is reduced to NH3 by electroenzymatic cascade reduction reaction on a bioconjugate, in which 1‐butyl‐3‐methylimidazolium bromide (ILBMB) modified chloroperoxidase (CPO) is fixed on polyethyleneimine (PEI) modified multi‐walled carbon nanotubes (MWCNT) to from bioconjugate (CPO‐ILBMB/MWCNT‐PEI). 15N and 14N isotope labeling reveal that the NH3 species is derived from NO2− reduction. Density functional theory calculations identify that the FeII species in heme center of CPO serve as the key active site for NO2− reduction. The amino groups derived from MWCNT‐PEI not only serve as a bridge to covalently immobilize CPO but also enrich the NO2− ion at electrode/solution interface through electrostatic interactions. The low energy barrier of NO2− reduction and low adsorption free energy of the intermediate result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in pH 5.0 solution. The highly efficient electroenzymatic reaction ensurespromising applications in the conversion of NO2− to NH3. Electrocatalysis combine with enzymatic catalysis to provide an efficient and clean process for nitrite reduction. The NO2– is effectively reduced to ammonia at a CPO‐ILBMB/MWCNT‐PEI bioconjugate by electroenzymatic cascade catalysis. The low energy barrier and low adsorption‐free energy result in high Faradaic efficiency (96.4%), NH3 yield (112.7 mg h−1 mgCPO−1), and high selectivity in near‐neutral solution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300669</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9936-3893</orcidid><orcidid>https://orcid.org/0000-0001-9545-6761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-05, Vol.13 (20), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2818599811
source Wiley
subjects Ammonia
ammonia synthesis
Chemical reduction
chloroperoxidase
Conversion
Density functional theory
electroenzymatic cascade reduction reaction
Free energy
Multi wall carbon nanotubes
nitrate reduction reaction
Nitrogen dioxide
Nitrogen isotopes
Polyethyleneimine
selectivity
title Highly Efficient Electroenzymatic Cascade Reduction Reaction For The Conversion of Nitrite to Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T20%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Electroenzymatic%20Cascade%20Reduction%20Reaction%20For%20The%20Conversion%20of%20Nitrite%20to%20Ammonia&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhu,%20Xuefang&rft.date=2023-05-01&rft.volume=13&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300669&rft_dat=%3Cproquest_cross%3E2818599811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-16144bac63472a0f7c813549402650973566a091defca2c1db6ad2ed120850be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818599811&rft_id=info:pmid/&rfr_iscdi=true