Loading…

Effective strain gradient continuum model of metamaterials and size effects analysis

In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogeniza...

Full description

Saved in:
Bibliographic Details
Published in:Continuum mechanics and thermodynamics 2023-05, Vol.35 (3), p.775-797
Main Authors: Yang, Hua, Timofeev, Dmitry, Giorgio, Ivan, Müller, Wolfgang H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23
cites cdi_FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23
container_end_page 797
container_issue 3
container_start_page 775
container_title Continuum mechanics and thermodynamics
container_volume 35
creator Yang, Hua
Timofeev, Dmitry
Giorgio, Ivan
Müller, Wolfgang H.
description In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogenization techniques using the equivalence of energy at the macro- and microscales within a so-called representative volume element. Numerical studies by means of finite element analysis were performed to investigate the effects of changing volume ratio and characteristic length for a single unit cell of the metamaterial as well as changing properties of the underlying material. It is also shown that the size effects occurring in a cantilever beam made of a periodic metamaterial can be captured with appropriate accuracy by using the identified effective stiffness tensors.
doi_str_mv 10.1007/s00161-020-00910-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2808428793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747895830</galeid><sourcerecordid>A747895830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYF23P7CTYedscpzE1rGU7gMKu3Rn4yZKcclHZyeD7tfPbQa7DR0E4n2kVy9j9wIeBYB6CgCiEAmkkACggEResJnIZJoA5njJZoAyT4RQ-TW7CWEPEcJczthmVddUDu6LeBi8dR3feVs56gZe9t3gunFsedtX1PC-5i0NtrUDeWebwG1X8eC-idN5x2lgm2Nw4ZZd1VFAd799zj6eV5vla7J-f3lbLtZJmUE6JGIrUKASRaa2pbUyB9SgLGZIGinXspC6FFWV01ZLrFCIIlcKU9QWC6hTOWcP096D7z9HCoPZ96OPJoJJNegs1QplVD1Oqp1tyLiu7uOjZayKWhefpNrF-UJlSmM8ChFIJ6D0fQieanPwrrX-aASYU9xmitvEuM05bnO6IicoRHG3I__n5R_qB8gFgVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808428793</pqid></control><display><type>article</type><title>Effective strain gradient continuum model of metamaterials and size effects analysis</title><source>Springer Link</source><creator>Yang, Hua ; Timofeev, Dmitry ; Giorgio, Ivan ; Müller, Wolfgang H.</creator><creatorcontrib>Yang, Hua ; Timofeev, Dmitry ; Giorgio, Ivan ; Müller, Wolfgang H.</creatorcontrib><description>In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogenization techniques using the equivalence of energy at the macro- and microscales within a so-called representative volume element. Numerical studies by means of finite element analysis were performed to investigate the effects of changing volume ratio and characteristic length for a single unit cell of the metamaterial as well as changing properties of the underlying material. It is also shown that the size effects occurring in a cantilever beam made of a periodic metamaterial can be captured with appropriate accuracy by using the identified effective stiffness tensors.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-020-00910-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Cantilever beams ; Classical and Continuum Physics ; Continuum modeling ; Engineering Thermodynamics ; Finite element method ; Fourier transforms ; Heat and Mass Transfer ; Homogenization ; Mathematical analysis ; Mechanics ; Metamaterials ; Methods ; Microbalances ; Microstructure ; Original Article ; Physics ; Physics and Astronomy ; Size effects ; Stiffness ; Structural Materials ; Tensors ; Theoretical and Applied Mechanics ; Unit cell</subject><ispartof>Continuum mechanics and thermodynamics, 2023-05, Vol.35 (3), p.775-797</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23</citedby><cites>FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23</cites><orcidid>0000-0003-2080-3452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Timofeev, Dmitry</creatorcontrib><creatorcontrib>Giorgio, Ivan</creatorcontrib><creatorcontrib>Müller, Wolfgang H.</creatorcontrib><title>Effective strain gradient continuum model of metamaterials and size effects analysis</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogenization techniques using the equivalence of energy at the macro- and microscales within a so-called representative volume element. Numerical studies by means of finite element analysis were performed to investigate the effects of changing volume ratio and characteristic length for a single unit cell of the metamaterial as well as changing properties of the underlying material. It is also shown that the size effects occurring in a cantilever beam made of a periodic metamaterial can be captured with appropriate accuracy by using the identified effective stiffness tensors.</description><subject>Accuracy</subject><subject>Cantilever beams</subject><subject>Classical and Continuum Physics</subject><subject>Continuum modeling</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Heat and Mass Transfer</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Metamaterials</subject><subject>Methods</subject><subject>Microbalances</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Size effects</subject><subject>Stiffness</subject><subject>Structural Materials</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Unit cell</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwzAMhs3YYF23P7CTYedscpzE1rGU7gMKu3Rn4yZKcclHZyeD7tfPbQa7DR0E4n2kVy9j9wIeBYB6CgCiEAmkkACggEResJnIZJoA5njJZoAyT4RQ-TW7CWEPEcJczthmVddUDu6LeBi8dR3feVs56gZe9t3gunFsedtX1PC-5i0NtrUDeWebwG1X8eC-idN5x2lgm2Nw4ZZd1VFAd799zj6eV5vla7J-f3lbLtZJmUE6JGIrUKASRaa2pbUyB9SgLGZIGinXspC6FFWV01ZLrFCIIlcKU9QWC6hTOWcP096D7z9HCoPZ96OPJoJJNegs1QplVD1Oqp1tyLiu7uOjZayKWhefpNrF-UJlSmM8ChFIJ6D0fQieanPwrrX-aASYU9xmitvEuM05bnO6IicoRHG3I__n5R_qB8gFgVY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Yang, Hua</creator><creator>Timofeev, Dmitry</creator><creator>Giorgio, Ivan</creator><creator>Müller, Wolfgang H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2080-3452</orcidid></search><sort><creationdate>20230501</creationdate><title>Effective strain gradient continuum model of metamaterials and size effects analysis</title><author>Yang, Hua ; Timofeev, Dmitry ; Giorgio, Ivan ; Müller, Wolfgang H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Cantilever beams</topic><topic>Classical and Continuum Physics</topic><topic>Continuum modeling</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Heat and Mass Transfer</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Metamaterials</topic><topic>Methods</topic><topic>Microbalances</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Size effects</topic><topic>Stiffness</topic><topic>Structural Materials</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Timofeev, Dmitry</creatorcontrib><creatorcontrib>Giorgio, Ivan</creatorcontrib><creatorcontrib>Müller, Wolfgang H.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hua</au><au>Timofeev, Dmitry</au><au>Giorgio, Ivan</au><au>Müller, Wolfgang H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective strain gradient continuum model of metamaterials and size effects analysis</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>775</spage><epage>797</epage><pages>775-797</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogenization techniques using the equivalence of energy at the macro- and microscales within a so-called representative volume element. Numerical studies by means of finite element analysis were performed to investigate the effects of changing volume ratio and characteristic length for a single unit cell of the metamaterial as well as changing properties of the underlying material. It is also shown that the size effects occurring in a cantilever beam made of a periodic metamaterial can be captured with appropriate accuracy by using the identified effective stiffness tensors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-020-00910-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2080-3452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2023-05, Vol.35 (3), p.775-797
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2808428793
source Springer Link
subjects Accuracy
Cantilever beams
Classical and Continuum Physics
Continuum modeling
Engineering Thermodynamics
Finite element method
Fourier transforms
Heat and Mass Transfer
Homogenization
Mathematical analysis
Mechanics
Metamaterials
Methods
Microbalances
Microstructure
Original Article
Physics
Physics and Astronomy
Size effects
Stiffness
Structural Materials
Tensors
Theoretical and Applied Mechanics
Unit cell
title Effective strain gradient continuum model of metamaterials and size effects analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20strain%20gradient%20continuum%20model%20of%20metamaterials%20and%20size%20effects%20analysis&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Yang,%20Hua&rft.date=2023-05-01&rft.volume=35&rft.issue=3&rft.spage=775&rft.epage=797&rft.pages=775-797&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-020-00910-3&rft_dat=%3Cgale_proqu%3EA747895830%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-1b191971647bcaa3509807a949e89e583638c1dd5eb839d91165779298a960f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808428793&rft_id=info:pmid/&rft_galeid=A747895830&rfr_iscdi=true