Loading…

Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process

The coatings produced by an atmospheric plasma spray process (APSP) must be of uniform quality. However, the complexity of the process and the random introduction of noise variables such as fluctuations in the powder injection rate and the arc voltage make it difficult to control the coating quality...

Full description

Saved in:
Bibliographic Details
Published in:SN applied sciences 2021-03, Vol.3 (3), p.294, Article 294
Main Authors: Guduri, B., Cybulsky, M., Pickrell, G. R., Batra, R. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023
cites cdi_FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023
container_end_page
container_issue 3
container_start_page 294
container_title SN applied sciences
container_volume 3
creator Guduri, B.
Cybulsky, M.
Pickrell, G. R.
Batra, R. C.
description The coatings produced by an atmospheric plasma spray process (APSP) must be of uniform quality. However, the complexity of the process and the random introduction of noise variables such as fluctuations in the powder injection rate and the arc voltage make it difficult to control the coating quality that has been shown to depend upon mean values of powder particles’ temperature and speed, collectively called mean particles’ states (MPSs), just before they impact the substrate. Here, we use a science-based methodology to develop a stable and adaptive controller for achieving consistent MPSs and thereby decrease the manufacturing cost. We first identify inputs into the APSP that significantly affect the MPSs and then formulate a relationship between these two quantities. When the MPSs deviate from their desired values, the adaptive controller is shown to successfully adjust the input parameters to correct them. The performance of the controller is tested via numerical experiments using the software, LAVA-P, that has been shown to well simulate the APSP.
doi_str_mv 10.1007/s42452-021-04296-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788430992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788430992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023</originalsourceid><addsrcrecordid>eNp9kDtrwzAQx0VpoSHNF-gk6NDJrSzJkjWG0BcEurSzkGUpUXBsV6cE_O3r1H1sne44_g_uh9B1Tu5yQuQ9cMoLmhGaZ4RTJbLhDM1oQVnGlMzPf3fBLtECYEcIoVIxXrIZ2ixr06dwdLiPnXUA2HZtil2DfRexsdvgjqHdnK4QILk24d7EFGzj4BZDMskBDi02ad9Bv3UxWNw3BvYGQx_N8BN7hS68acAtvuccvT8-vK2es_Xr08tquc4sEyxlrGLeC668p9zzQhhTCVcJW9ZcCUrceFJ5bQrmDSW15EbRvHKq9KWUShLK5uhmyh17Pw4Okt51h9iOlZrKsuSMKHVS0UllYwcQndd9DHsTB50TfWKqJ6Z6ZKq_mOphNLHJND42InHxL_of1ydudXv_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788430992</pqid></control><display><type>article</type><title>Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Guduri, B. ; Cybulsky, M. ; Pickrell, G. R. ; Batra, R. C.</creator><creatorcontrib>Guduri, B. ; Cybulsky, M. ; Pickrell, G. R. ; Batra, R. C.</creatorcontrib><description>The coatings produced by an atmospheric plasma spray process (APSP) must be of uniform quality. However, the complexity of the process and the random introduction of noise variables such as fluctuations in the powder injection rate and the arc voltage make it difficult to control the coating quality that has been shown to depend upon mean values of powder particles’ temperature and speed, collectively called mean particles’ states (MPSs), just before they impact the substrate. Here, we use a science-based methodology to develop a stable and adaptive controller for achieving consistent MPSs and thereby decrease the manufacturing cost. We first identify inputs into the APSP that significantly affect the MPSs and then formulate a relationship between these two quantities. When the MPSs deviate from their desired values, the adaptive controller is shown to successfully adjust the input parameters to correct them. The performance of the controller is tested via numerical experiments using the software, LAVA-P, that has been shown to well simulate the APSP.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-021-04296-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>6. Interdisciplinary (general) ; Adaptive control ; Applied and Technical Physics ; Chemistry/Food Science ; Controllers ; Design of experiments ; Earth Sciences ; Engineering ; Environment ; Finite volume method ; Gas flow ; Gases ; Heat ; Materials Science ; Mathematical models ; Plasma ; Process control ; Process controls ; Production costs ; Random variables ; Research Article ; Substrates ; Velocity</subject><ispartof>SN applied sciences, 2021-03, Vol.3 (3), p.294, Article 294</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023</citedby><cites>FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023</cites><orcidid>0000-0001-8813-6612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2788430992/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2788430992?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,783,787,25765,27936,27937,37024,44602,75460</link.rule.ids></links><search><creatorcontrib>Guduri, B.</creatorcontrib><creatorcontrib>Cybulsky, M.</creatorcontrib><creatorcontrib>Pickrell, G. R.</creatorcontrib><creatorcontrib>Batra, R. C.</creatorcontrib><title>Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The coatings produced by an atmospheric plasma spray process (APSP) must be of uniform quality. However, the complexity of the process and the random introduction of noise variables such as fluctuations in the powder injection rate and the arc voltage make it difficult to control the coating quality that has been shown to depend upon mean values of powder particles’ temperature and speed, collectively called mean particles’ states (MPSs), just before they impact the substrate. Here, we use a science-based methodology to develop a stable and adaptive controller for achieving consistent MPSs and thereby decrease the manufacturing cost. We first identify inputs into the APSP that significantly affect the MPSs and then formulate a relationship between these two quantities. When the MPSs deviate from their desired values, the adaptive controller is shown to successfully adjust the input parameters to correct them. The performance of the controller is tested via numerical experiments using the software, LAVA-P, that has been shown to well simulate the APSP.</description><subject>6. Interdisciplinary (general)</subject><subject>Adaptive control</subject><subject>Applied and Technical Physics</subject><subject>Chemistry/Food Science</subject><subject>Controllers</subject><subject>Design of experiments</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Finite volume method</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Heat</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Plasma</subject><subject>Process control</subject><subject>Process controls</subject><subject>Production costs</subject><subject>Random variables</subject><subject>Research Article</subject><subject>Substrates</subject><subject>Velocity</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kDtrwzAQx0VpoSHNF-gk6NDJrSzJkjWG0BcEurSzkGUpUXBsV6cE_O3r1H1sne44_g_uh9B1Tu5yQuQ9cMoLmhGaZ4RTJbLhDM1oQVnGlMzPf3fBLtECYEcIoVIxXrIZ2ixr06dwdLiPnXUA2HZtil2DfRexsdvgjqHdnK4QILk24d7EFGzj4BZDMskBDi02ad9Bv3UxWNw3BvYGQx_N8BN7hS68acAtvuccvT8-vK2es_Xr08tquc4sEyxlrGLeC668p9zzQhhTCVcJW9ZcCUrceFJ5bQrmDSW15EbRvHKq9KWUShLK5uhmyh17Pw4Okt51h9iOlZrKsuSMKHVS0UllYwcQndd9DHsTB50TfWKqJ6Z6ZKq_mOphNLHJND42InHxL_of1ydudXv_</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Guduri, B.</creator><creator>Cybulsky, M.</creator><creator>Pickrell, G. R.</creator><creator>Batra, R. C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8813-6612</orcidid></search><sort><creationdate>20210301</creationdate><title>Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process</title><author>Guduri, B. ; Cybulsky, M. ; Pickrell, G. R. ; Batra, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>6. Interdisciplinary (general)</topic><topic>Adaptive control</topic><topic>Applied and Technical Physics</topic><topic>Chemistry/Food Science</topic><topic>Controllers</topic><topic>Design of experiments</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Finite volume method</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Heat</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Plasma</topic><topic>Process control</topic><topic>Process controls</topic><topic>Production costs</topic><topic>Random variables</topic><topic>Research Article</topic><topic>Substrates</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guduri, B.</creatorcontrib><creatorcontrib>Cybulsky, M.</creatorcontrib><creatorcontrib>Pickrell, G. R.</creatorcontrib><creatorcontrib>Batra, R. C.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guduri, B.</au><au>Cybulsky, M.</au><au>Pickrell, G. R.</au><au>Batra, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>294</spage><pages>294-</pages><artnum>294</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The coatings produced by an atmospheric plasma spray process (APSP) must be of uniform quality. However, the complexity of the process and the random introduction of noise variables such as fluctuations in the powder injection rate and the arc voltage make it difficult to control the coating quality that has been shown to depend upon mean values of powder particles’ temperature and speed, collectively called mean particles’ states (MPSs), just before they impact the substrate. Here, we use a science-based methodology to develop a stable and adaptive controller for achieving consistent MPSs and thereby decrease the manufacturing cost. We first identify inputs into the APSP that significantly affect the MPSs and then formulate a relationship between these two quantities. When the MPSs deviate from their desired values, the adaptive controller is shown to successfully adjust the input parameters to correct them. The performance of the controller is tested via numerical experiments using the software, LAVA-P, that has been shown to well simulate the APSP.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-021-04296-y</doi><orcidid>https://orcid.org/0000-0001-8813-6612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2021-03, Vol.3 (3), p.294, Article 294
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788430992
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects 6. Interdisciplinary (general)
Adaptive control
Applied and Technical Physics
Chemistry/Food Science
Controllers
Design of experiments
Earth Sciences
Engineering
Environment
Finite volume method
Gas flow
Gases
Heat
Materials Science
Mathematical models
Plasma
Process control
Process controls
Production costs
Random variables
Research Article
Substrates
Velocity
title Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T20%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20process%20control%20for%20achieving%20consistent%20particles'%20states%20in%20atmospheric%20plasma%20spray%20process&rft.jtitle=SN%20applied%20sciences&rft.au=Guduri,%20B.&rft.date=2021-03-01&rft.volume=3&rft.issue=3&rft.spage=294&rft.pages=294-&rft.artnum=294&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-021-04296-y&rft_dat=%3Cproquest_cross%3E2788430992%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-3b3ff649ff24f456aab6eb6c8d49620e45691da53fa20d74a921be98f87797023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788430992&rft_id=info:pmid/&rfr_iscdi=true