Loading…

A Liquid Metal Encapsulation for Analyzing Porous Nanomaterials by Atom Probe Tomography

Analyzing porous (nano)materials via atom probe tomography has been notoriously difficult. Voids and pores act as concentrators of the electrostatic pressure, which results in premature specimen failure, and the electrostatic field distribution near voids leads to aberrations that are difficult to p...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis 2022-08, Vol.28 (4), p.1198-1206
Main Authors: Kim, Se-Ho, El-Zoka, Ayman A., Gault, Baptiste
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analyzing porous (nano)materials via atom probe tomography has been notoriously difficult. Voids and pores act as concentrators of the electrostatic pressure, which results in premature specimen failure, and the electrostatic field distribution near voids leads to aberrations that are difficult to predict. In this study, we propose a new encapsulating method for porous samples using a low melting point Bi–In–Sn alloy, known as Field's metal. As a model material, we used porous iron made by direct-hydrogen reduction of single-crystalline wüstite. The complete encapsulation was performed using in situ heating on the stage of a scanning electron microscope. No visible corrosion nor dissolution of the sample occurred. Subsequently, specimens were shaped by focused ion-beam milling under cryogenic conditions at −190°C. The proposed approach is versatile and can be applied to provide good quality atom probe datasets from micro/nanoporous materials.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927621012964