Loading…

Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer

The interfacial zone plays a key role in regulating the dielectric capabilities of polymer-based composites. In this article, two kinds of polar polymers were designed and selected as the shell layer of BaTiO3 nanoparticles to investigate the influence of the chain conformation and band-gap width of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-04, Vol.10 (16), p.6323-6333
Main Authors: Ding, Cuilian, Tang, Xinxuan, Yu, Shiqi, Chen, Sheng, Liu, Zijin, Luo, Hang, Zhang, Dou
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6333
container_issue 16
container_start_page 6323
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 10
creator Ding, Cuilian
Tang, Xinxuan
Yu, Shiqi
Chen, Sheng
Liu, Zijin
Luo, Hang
Zhang, Dou
description The interfacial zone plays a key role in regulating the dielectric capabilities of polymer-based composites. In this article, two kinds of polar polymers were designed and selected as the shell layer of BaTiO3 nanoparticles to investigate the influence of the chain conformation and band-gap width of an interfacial modifier on the dielectric behavior and energy storage properties of ferroelectric poly(vinylidene fluoride) (PVDF)-based nanocomposites. Compared with the polar coil-chain cyano-polymer poly[bis(2-cyanoethyl)-2-vinylterephthalate] (PECN), the polar rigid-chain cyano-polymer poly[bis(4-cyanophenyl)-2-vinylterephthalate] (PBCN) modifier with a high dielectric constant (ϵr) and low band-gap width showed a more noticeable effect on the enhanced dielectric and energy density storage of PVDF-based nanocomposites. The ϵr of PBCN@BT/PVDF nanocomposites increased from 7.8 to 16.9 at 103 Hz with the increasing PBCN@BT content from 0 vol% to 9 vol%. In addition, the highest breakdown strength of 464 MV m−1 and the maximum discharge energy density of 10.86 J cm−3 were achieved in 1 vol%-PBCN@BT/PVDF nanocomposites due to the higher electron affinity. This work furnishes a potential pathway for reaching the high-energy-density of polymer-based nanocomposites by taking the rigid polymer modifier with a low band-gap width.
doi_str_mv 10.1039/d2tc00153e
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2652867196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652867196</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3769abfa1ff8959d2f84a383a0d758cbef1d165add3af0d10b34ba46a1935f823</originalsourceid><addsrcrecordid>eNo9kEtKBDEQhhtRUNSNJwi40UVr0pnOpJc6-AJhNroeqpPKTCQmbZIWeucdPJFX8STGB9amfoqf74OqqiNGzxjl3blusqKUtRy3qr2GtrSet3y2_Z8bsVsdpvREy0gmpOj2qo9F8GqMEX12E0G_Aa9QE23RocrRKjLEMGDMFhMBr0sF43oiGn2yeSLWkyG46eTV-snZckVi3Bhiiad1D6mwVIj4-faeNugcuYQHu-TEgw8qPA-hQAr41UKp-ZTjqLL1awLfVIg_xmjXVv9YnjEWYcZoQFlwxMGE8aDaMeASHv7t_erx-uphcVvfL2_uFhf39cAkzzWfiw56A8wY2bWdboycAZccqJ63UvVomGaiBa05GKoZ7fmsh5kA1vHWyIbvV8e_3PKQlxFTXj2FMfqiXDWibaSYs07wL4kEfkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652867196</pqid></control><display><type>article</type><title>Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Ding, Cuilian ; Tang, Xinxuan ; Yu, Shiqi ; Chen, Sheng ; Liu, Zijin ; Luo, Hang ; Zhang, Dou</creator><creatorcontrib>Ding, Cuilian ; Tang, Xinxuan ; Yu, Shiqi ; Chen, Sheng ; Liu, Zijin ; Luo, Hang ; Zhang, Dou</creatorcontrib><description>The interfacial zone plays a key role in regulating the dielectric capabilities of polymer-based composites. In this article, two kinds of polar polymers were designed and selected as the shell layer of BaTiO3 nanoparticles to investigate the influence of the chain conformation and band-gap width of an interfacial modifier on the dielectric behavior and energy storage properties of ferroelectric poly(vinylidene fluoride) (PVDF)-based nanocomposites. Compared with the polar coil-chain cyano-polymer poly[bis(2-cyanoethyl)-2-vinylterephthalate] (PECN), the polar rigid-chain cyano-polymer poly[bis(4-cyanophenyl)-2-vinylterephthalate] (PBCN) modifier with a high dielectric constant (ϵr) and low band-gap width showed a more noticeable effect on the enhanced dielectric and energy density storage of PVDF-based nanocomposites. The ϵr of PBCN@BT/PVDF nanocomposites increased from 7.8 to 16.9 at 103 Hz with the increasing PBCN@BT content from 0 vol% to 9 vol%. In addition, the highest breakdown strength of 464 MV m−1 and the maximum discharge energy density of 10.86 J cm−3 were achieved in 1 vol%-PBCN@BT/PVDF nanocomposites due to the higher electron affinity. This work furnishes a potential pathway for reaching the high-energy-density of polymer-based nanocomposites by taking the rigid polymer modifier with a low band-gap width.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d2tc00153e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Barium titanates ; Chains (polymeric) ; Coils ; Dielectric properties ; Electron affinity ; Energy gap ; Energy storage ; Ferroelectricity ; Fluorides ; Flux density ; Molecular conformation ; Nanocomposites ; Nanoparticles ; Polymer matrix composites ; Polymers ; Polyvinylidene fluorides ; Vinylidene fluoride</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-04, Vol.10 (16), p.6323-6333</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Ding, Cuilian</creatorcontrib><creatorcontrib>Tang, Xinxuan</creatorcontrib><creatorcontrib>Yu, Shiqi</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Liu, Zijin</creatorcontrib><creatorcontrib>Luo, Hang</creatorcontrib><creatorcontrib>Zhang, Dou</creatorcontrib><title>Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The interfacial zone plays a key role in regulating the dielectric capabilities of polymer-based composites. In this article, two kinds of polar polymers were designed and selected as the shell layer of BaTiO3 nanoparticles to investigate the influence of the chain conformation and band-gap width of an interfacial modifier on the dielectric behavior and energy storage properties of ferroelectric poly(vinylidene fluoride) (PVDF)-based nanocomposites. Compared with the polar coil-chain cyano-polymer poly[bis(2-cyanoethyl)-2-vinylterephthalate] (PECN), the polar rigid-chain cyano-polymer poly[bis(4-cyanophenyl)-2-vinylterephthalate] (PBCN) modifier with a high dielectric constant (ϵr) and low band-gap width showed a more noticeable effect on the enhanced dielectric and energy density storage of PVDF-based nanocomposites. The ϵr of PBCN@BT/PVDF nanocomposites increased from 7.8 to 16.9 at 103 Hz with the increasing PBCN@BT content from 0 vol% to 9 vol%. In addition, the highest breakdown strength of 464 MV m−1 and the maximum discharge energy density of 10.86 J cm−3 were achieved in 1 vol%-PBCN@BT/PVDF nanocomposites due to the higher electron affinity. This work furnishes a potential pathway for reaching the high-energy-density of polymer-based nanocomposites by taking the rigid polymer modifier with a low band-gap width.</description><subject>Barium titanates</subject><subject>Chains (polymeric)</subject><subject>Coils</subject><subject>Dielectric properties</subject><subject>Electron affinity</subject><subject>Energy gap</subject><subject>Energy storage</subject><subject>Ferroelectricity</subject><subject>Fluorides</subject><subject>Flux density</subject><subject>Molecular conformation</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyvinylidene fluorides</subject><subject>Vinylidene fluoride</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtKBDEQhhtRUNSNJwi40UVr0pnOpJc6-AJhNroeqpPKTCQmbZIWeucdPJFX8STGB9amfoqf74OqqiNGzxjl3blusqKUtRy3qr2GtrSet3y2_Z8bsVsdpvREy0gmpOj2qo9F8GqMEX12E0G_Aa9QE23RocrRKjLEMGDMFhMBr0sF43oiGn2yeSLWkyG46eTV-snZckVi3Bhiiad1D6mwVIj4-faeNugcuYQHu-TEgw8qPA-hQAr41UKp-ZTjqLL1awLfVIg_xmjXVv9YnjEWYcZoQFlwxMGE8aDaMeASHv7t_erx-uphcVvfL2_uFhf39cAkzzWfiw56A8wY2bWdboycAZccqJ63UvVomGaiBa05GKoZ7fmsh5kA1vHWyIbvV8e_3PKQlxFTXj2FMfqiXDWibaSYs07wL4kEfkc</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Ding, Cuilian</creator><creator>Tang, Xinxuan</creator><creator>Yu, Shiqi</creator><creator>Chen, Sheng</creator><creator>Liu, Zijin</creator><creator>Luo, Hang</creator><creator>Zhang, Dou</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220421</creationdate><title>Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer</title><author>Ding, Cuilian ; Tang, Xinxuan ; Yu, Shiqi ; Chen, Sheng ; Liu, Zijin ; Luo, Hang ; Zhang, Dou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3769abfa1ff8959d2f84a383a0d758cbef1d165add3af0d10b34ba46a1935f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barium titanates</topic><topic>Chains (polymeric)</topic><topic>Coils</topic><topic>Dielectric properties</topic><topic>Electron affinity</topic><topic>Energy gap</topic><topic>Energy storage</topic><topic>Ferroelectricity</topic><topic>Fluorides</topic><topic>Flux density</topic><topic>Molecular conformation</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyvinylidene fluorides</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Cuilian</creatorcontrib><creatorcontrib>Tang, Xinxuan</creatorcontrib><creatorcontrib>Yu, Shiqi</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Liu, Zijin</creatorcontrib><creatorcontrib>Luo, Hang</creatorcontrib><creatorcontrib>Zhang, Dou</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Cuilian</au><au>Tang, Xinxuan</au><au>Yu, Shiqi</au><au>Chen, Sheng</au><au>Liu, Zijin</au><au>Luo, Hang</au><au>Zhang, Dou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-04-21</date><risdate>2022</risdate><volume>10</volume><issue>16</issue><spage>6323</spage><epage>6333</epage><pages>6323-6333</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The interfacial zone plays a key role in regulating the dielectric capabilities of polymer-based composites. In this article, two kinds of polar polymers were designed and selected as the shell layer of BaTiO3 nanoparticles to investigate the influence of the chain conformation and band-gap width of an interfacial modifier on the dielectric behavior and energy storage properties of ferroelectric poly(vinylidene fluoride) (PVDF)-based nanocomposites. Compared with the polar coil-chain cyano-polymer poly[bis(2-cyanoethyl)-2-vinylterephthalate] (PECN), the polar rigid-chain cyano-polymer poly[bis(4-cyanophenyl)-2-vinylterephthalate] (PBCN) modifier with a high dielectric constant (ϵr) and low band-gap width showed a more noticeable effect on the enhanced dielectric and energy density storage of PVDF-based nanocomposites. The ϵr of PBCN@BT/PVDF nanocomposites increased from 7.8 to 16.9 at 103 Hz with the increasing PBCN@BT content from 0 vol% to 9 vol%. In addition, the highest breakdown strength of 464 MV m−1 and the maximum discharge energy density of 10.86 J cm−3 were achieved in 1 vol%-PBCN@BT/PVDF nanocomposites due to the higher electron affinity. This work furnishes a potential pathway for reaching the high-energy-density of polymer-based nanocomposites by taking the rigid polymer modifier with a low band-gap width.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2tc00153e</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-04, Vol.10 (16), p.6323-6333
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2652867196
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Barium titanates
Chains (polymeric)
Coils
Dielectric properties
Electron affinity
Energy gap
Energy storage
Ferroelectricity
Fluorides
Flux density
Molecular conformation
Nanocomposites
Nanoparticles
Polymer matrix composites
Polymers
Polyvinylidene fluorides
Vinylidene fluoride
title Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core–shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T04%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrently%20enhanced%20dielectric%20properties%20and%20energy%20density%20in%20poly(vinylidene%20fluoride)-based%20core%E2%80%93shell%20BaTiO3%20nanocomposites%20via%20constructing%20a%20polar%20and%20rigid%20polymer%20interfacial%20layer&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Ding,%20Cuilian&rft.date=2022-04-21&rft.volume=10&rft.issue=16&rft.spage=6323&rft.epage=6333&rft.pages=6323-6333&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d2tc00153e&rft_dat=%3Cproquest%3E2652867196%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-3769abfa1ff8959d2f84a383a0d758cbef1d165add3af0d10b34ba46a1935f823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652867196&rft_id=info:pmid/&rfr_iscdi=true