Loading…

Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor

In this study, new high‐quality experimental data for culturing green microalgae Scenedesmus in tubular and cylindrical split airlift photobioreactors were obtained under different operating conditions. The obtained experimental data of culturing microalgae Scenedesmus in a tubular photobioreactor w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2022-05, Vol.97 (5), p.1112-1127
Main Authors: Sabri, Laith S, Ojha, Aastha, Sultan, Abbas J, Aldahhan, Muthanna H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3
cites cdi_FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3
container_end_page 1127
container_issue 5
container_start_page 1112
container_title Journal of chemical technology and biotechnology (1986)
container_volume 97
creator Sabri, Laith S
Ojha, Aastha
Sultan, Abbas J
Aldahhan, Muthanna H
description In this study, new high‐quality experimental data for culturing green microalgae Scenedesmus in tubular and cylindrical split airlift photobioreactors were obtained under different operating conditions. The obtained experimental data of culturing microalgae Scenedesmus in a tubular photobioreactor were used for determining the kinetic parameters of the photosynthetic reaction. On the other hand, the culturing of green microalgae in a split airlift photobioreactor was used to measure the microalgae cell trajectory using an advanced radioactive particle tracking (RPT) technique. The obtained results in terms of kinetic parameters of the photosynthetic reaction and microalgae cell trajectory were integrated for the first time to obtain the three‐state dynamic growth model. This integration between dynamic growth and cell trajectories will provide a direct and comprehensive tool for photobioreactor analysis, which is essential for proper and efficient reactor design and scale‐up for large‐scale biomass production. © 2021 Society of Chemical Industry (SCI).
doi_str_mv 10.1002/jctb.6996
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2648057742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648057742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtGcnsZ0RKj6KKrGU2XJsp02VxsF2VXXjEXhGnoSEdmW5k06_O53-CN0SmBAAOt3oWE5YUbAzNCJQ8CRjDM7RCCgTCc15fomuQtgAABOUjZCZt9GuvIq1a7GrsDm0altrvPJuH9d464xt6naFVWvw-mC8O4GA67Yf9jVa36rm5-u7ca7DoWvqiLu1i66snbdKR-ev0UWlmmBvTn2MPp6flrPXZPH-Mp89LBJNC86SnDGd8lIwRiBjNM-1AG5AEM1tZkiRGiKqAtKKkIKJLOWElJlIVam4tgJsOkZ3x7udd587G6LcuN3wXZCUZQJyzjPaq_uj0t6F4G0lO19vlT9IAnIIUQ4hyiHE3k6Pdl839vA_lG-z5ePfxi9gEXV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648057742</pqid></control><display><type>article</type><title>Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor</title><source>Wiley-Blackwell Journals</source><creator>Sabri, Laith S ; Ojha, Aastha ; Sultan, Abbas J ; Aldahhan, Muthanna H</creator><creatorcontrib>Sabri, Laith S ; Ojha, Aastha ; Sultan, Abbas J ; Aldahhan, Muthanna H</creatorcontrib><description>In this study, new high‐quality experimental data for culturing green microalgae Scenedesmus in tubular and cylindrical split airlift photobioreactors were obtained under different operating conditions. The obtained experimental data of culturing microalgae Scenedesmus in a tubular photobioreactor were used for determining the kinetic parameters of the photosynthetic reaction. On the other hand, the culturing of green microalgae in a split airlift photobioreactor was used to measure the microalgae cell trajectory using an advanced radioactive particle tracking (RPT) technique. The obtained results in terms of kinetic parameters of the photosynthetic reaction and microalgae cell trajectory were integrated for the first time to obtain the three‐state dynamic growth model. This integration between dynamic growth and cell trajectories will provide a direct and comprehensive tool for photobioreactor analysis, which is essential for proper and efficient reactor design and scale‐up for large‐scale biomass production. © 2021 Society of Chemical Industry (SCI).</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6996</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algae ; Aquatic microorganisms ; dynamic growth model ; Experimental data ; Growth models ; Hydrodynamics ; Integration ; Mathematical models ; microalga Scenedesmus ; Parameters ; Particle tracking ; Photobioreactors ; Photosynthesis ; Reactor design ; RPT technique ; Scenedesmus ; split photobioreactor</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2022-05, Vol.97 (5), p.1112-1127</ispartof><rights>2021 Society of Chemical Industry (SCI).</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3</citedby><cites>FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3</cites><orcidid>0000-0002-3919-3175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6996$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6996$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Sabri, Laith S</creatorcontrib><creatorcontrib>Ojha, Aastha</creatorcontrib><creatorcontrib>Sultan, Abbas J</creatorcontrib><creatorcontrib>Aldahhan, Muthanna H</creatorcontrib><title>Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor</title><title>Journal of chemical technology and biotechnology (1986)</title><description>In this study, new high‐quality experimental data for culturing green microalgae Scenedesmus in tubular and cylindrical split airlift photobioreactors were obtained under different operating conditions. The obtained experimental data of culturing microalgae Scenedesmus in a tubular photobioreactor were used for determining the kinetic parameters of the photosynthetic reaction. On the other hand, the culturing of green microalgae in a split airlift photobioreactor was used to measure the microalgae cell trajectory using an advanced radioactive particle tracking (RPT) technique. The obtained results in terms of kinetic parameters of the photosynthetic reaction and microalgae cell trajectory were integrated for the first time to obtain the three‐state dynamic growth model. This integration between dynamic growth and cell trajectories will provide a direct and comprehensive tool for photobioreactor analysis, which is essential for proper and efficient reactor design and scale‐up for large‐scale biomass production. © 2021 Society of Chemical Industry (SCI).</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>dynamic growth model</subject><subject>Experimental data</subject><subject>Growth models</subject><subject>Hydrodynamics</subject><subject>Integration</subject><subject>Mathematical models</subject><subject>microalga Scenedesmus</subject><subject>Parameters</subject><subject>Particle tracking</subject><subject>Photobioreactors</subject><subject>Photosynthesis</subject><subject>Reactor design</subject><subject>RPT technique</subject><subject>Scenedesmus</subject><subject>split photobioreactor</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtGcnsZ0RKj6KKrGU2XJsp02VxsF2VXXjEXhGnoSEdmW5k06_O53-CN0SmBAAOt3oWE5YUbAzNCJQ8CRjDM7RCCgTCc15fomuQtgAABOUjZCZt9GuvIq1a7GrsDm0altrvPJuH9d464xt6naFVWvw-mC8O4GA67Yf9jVa36rm5-u7ca7DoWvqiLu1i66snbdKR-ev0UWlmmBvTn2MPp6flrPXZPH-Mp89LBJNC86SnDGd8lIwRiBjNM-1AG5AEM1tZkiRGiKqAtKKkIKJLOWElJlIVam4tgJsOkZ3x7udd587G6LcuN3wXZCUZQJyzjPaq_uj0t6F4G0lO19vlT9IAnIIUQ4hyiHE3k6Pdl839vA_lG-z5ePfxi9gEXV0</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Sabri, Laith S</creator><creator>Ojha, Aastha</creator><creator>Sultan, Abbas J</creator><creator>Aldahhan, Muthanna H</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3919-3175</orcidid></search><sort><creationdate>202205</creationdate><title>Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor</title><author>Sabri, Laith S ; Ojha, Aastha ; Sultan, Abbas J ; Aldahhan, Muthanna H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>dynamic growth model</topic><topic>Experimental data</topic><topic>Growth models</topic><topic>Hydrodynamics</topic><topic>Integration</topic><topic>Mathematical models</topic><topic>microalga Scenedesmus</topic><topic>Parameters</topic><topic>Particle tracking</topic><topic>Photobioreactors</topic><topic>Photosynthesis</topic><topic>Reactor design</topic><topic>RPT technique</topic><topic>Scenedesmus</topic><topic>split photobioreactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabri, Laith S</creatorcontrib><creatorcontrib>Ojha, Aastha</creatorcontrib><creatorcontrib>Sultan, Abbas J</creatorcontrib><creatorcontrib>Aldahhan, Muthanna H</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabri, Laith S</au><au>Ojha, Aastha</au><au>Sultan, Abbas J</au><au>Aldahhan, Muthanna H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>97</volume><issue>5</issue><spage>1112</spage><epage>1127</epage><pages>1112-1127</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>In this study, new high‐quality experimental data for culturing green microalgae Scenedesmus in tubular and cylindrical split airlift photobioreactors were obtained under different operating conditions. The obtained experimental data of culturing microalgae Scenedesmus in a tubular photobioreactor were used for determining the kinetic parameters of the photosynthetic reaction. On the other hand, the culturing of green microalgae in a split airlift photobioreactor was used to measure the microalgae cell trajectory using an advanced radioactive particle tracking (RPT) technique. The obtained results in terms of kinetic parameters of the photosynthetic reaction and microalgae cell trajectory were integrated for the first time to obtain the three‐state dynamic growth model. This integration between dynamic growth and cell trajectories will provide a direct and comprehensive tool for photobioreactor analysis, which is essential for proper and efficient reactor design and scale‐up for large‐scale biomass production. © 2021 Society of Chemical Industry (SCI).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6996</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3919-3175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2022-05, Vol.97 (5), p.1112-1127
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2648057742
source Wiley-Blackwell Journals
subjects Algae
Aquatic microorganisms
dynamic growth model
Experimental data
Growth models
Hydrodynamics
Integration
Mathematical models
microalga Scenedesmus
Parameters
Particle tracking
Photobioreactors
Photosynthesis
Reactor design
RPT technique
Scenedesmus
split photobioreactor
title Integration of dynamic growth modeling and hydrodynamics in an internal‐loop split photobioreactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20dynamic%20growth%20modeling%20and%20hydrodynamics%20in%20an%20internal%E2%80%90loop%20split%20photobioreactor&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Sabri,%20Laith%20S&rft.date=2022-05&rft.volume=97&rft.issue=5&rft.spage=1112&rft.epage=1127&rft.pages=1112-1127&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6996&rft_dat=%3Cproquest_cross%3E2648057742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2976-566c37b8661046255c807d081c7e4d193d18f903f1196843711b483aba7ce80e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648057742&rft_id=info:pmid/&rfr_iscdi=true