Loading…

Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries

Carbon coated Si core–shell structures have been proposed to solve the adverse effects of Si-based anode. However, designing ideal core–shell architecture with excellent surface and interface properties is still a significant challenge. Herein, a novel peanut-like structure of B-doped silicon/carbon...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022-04, Vol.41 (4), p.1276-1283
Main Authors: Zhang, Fang-Zhou, Ma, Yuan-Yuan, Jiang, Miao-Miao, Luo, Wei, Yang, Jian-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13
cites cdi_FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13
container_end_page 1283
container_issue 4
container_start_page 1276
container_title Rare metals
container_volume 41
creator Zhang, Fang-Zhou
Ma, Yuan-Yuan
Jiang, Miao-Miao
Luo, Wei
Yang, Jian-Ping
description Carbon coated Si core–shell structures have been proposed to solve the adverse effects of Si-based anode. However, designing ideal core–shell architecture with excellent surface and interface properties is still a significant challenge. Herein, a novel peanut-like structure of B-doped silicon/carbon nanoparticle (Si@B-C) synthesized by sol–gel process and subsequent thermal reduction is reported. The peanut-like Si@B-C electrode demonstrates a superior cyclability of 534 mAh·g −1 after 1000 cycles at high current density of 1000 mA·g −1 . The exceptional electrochemical performance is attributed to the boric acid-induced highly interconnected peanut-like structure and boron heteroatom framework could provide a continuous electron pathway to reduce the irreversible lithium ion loss during rapid cycling. This work provides insight into the development of the heteroatom-doped Si-based anodes with stable cycling performance for LIBs.
doi_str_mv 10.1007/s12598-021-01741-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633262994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633262994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhSMEEsvCBagiURvGdn6cElb8SUg0UFt2Mt71ksTBdgo67sANOQmGRaKjmTcavfdG-rLslMI5BagvAmVlIwgwSoDWRZp72YKKqiY1FeV-2gHSsWT0MDsKYQtQFFUFi8xcOe_GfIMRvVPRDaRzE3Z5sL1t3fj5_tEqr5NjQjXOkfT2BfPWDZMLNmLIcVS6T9q7cZ331mAacWPngdgU0iqmXovhODswqg948qvL7Pnm-ml1Rx4eb-9Xlw-k5bSJRDAqgAkUlIPpmDFKd0YzrVRTgykZcoZFTauSKs4bFFq3mnMo6gKwapDyZXa26528e50xRLl1sx_TS8kqzlnFmqZILrZztd6F4NHIydtB-TdJQX7zlDueMvGUPzwlpBDfhUIyj2v0f9X_pL4ALBV60A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633262994</pqid></control><display><type>article</type><title>Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries</title><source>Springer Link</source><creator>Zhang, Fang-Zhou ; Ma, Yuan-Yuan ; Jiang, Miao-Miao ; Luo, Wei ; Yang, Jian-Ping</creator><creatorcontrib>Zhang, Fang-Zhou ; Ma, Yuan-Yuan ; Jiang, Miao-Miao ; Luo, Wei ; Yang, Jian-Ping</creatorcontrib><description>Carbon coated Si core–shell structures have been proposed to solve the adverse effects of Si-based anode. However, designing ideal core–shell architecture with excellent surface and interface properties is still a significant challenge. Herein, a novel peanut-like structure of B-doped silicon/carbon nanoparticle (Si@B-C) synthesized by sol–gel process and subsequent thermal reduction is reported. The peanut-like Si@B-C electrode demonstrates a superior cyclability of 534 mAh·g −1 after 1000 cycles at high current density of 1000 mA·g −1 . The exceptional electrochemical performance is attributed to the boric acid-induced highly interconnected peanut-like structure and boron heteroatom framework could provide a continuous electron pathway to reduce the irreversible lithium ion loss during rapid cycling. This work provides insight into the development of the heteroatom-doped Si-based anodes with stable cycling performance for LIBs.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-021-01741-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anode effect ; Biomaterials ; Boron ; Carbon ; Chemistry and Materials Science ; Core-shell structure ; Cycles ; Electrochemical analysis ; Energy ; Interfacial properties ; Lithium ; Lithium-ion batteries ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoparticles ; Nanoscale Science and Technology ; Original Article ; Peanuts ; Physical Chemistry ; Rechargeable batteries ; Silicon ; Sol-gel processes ; Thermal reduction</subject><ispartof>Rare metals, 2022-04, Vol.41 (4), p.1276-1283</ispartof><rights>Youke Publishing Co.,Ltd 2021</rights><rights>Youke Publishing Co.,Ltd 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13</citedby><cites>FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13</cites><orcidid>0000-0003-4382-4301 ; 0000-0003-1495-270X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Zhang, Fang-Zhou</creatorcontrib><creatorcontrib>Ma, Yuan-Yuan</creatorcontrib><creatorcontrib>Jiang, Miao-Miao</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Yang, Jian-Ping</creatorcontrib><title>Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Carbon coated Si core–shell structures have been proposed to solve the adverse effects of Si-based anode. However, designing ideal core–shell architecture with excellent surface and interface properties is still a significant challenge. Herein, a novel peanut-like structure of B-doped silicon/carbon nanoparticle (Si@B-C) synthesized by sol–gel process and subsequent thermal reduction is reported. The peanut-like Si@B-C electrode demonstrates a superior cyclability of 534 mAh·g −1 after 1000 cycles at high current density of 1000 mA·g −1 . The exceptional electrochemical performance is attributed to the boric acid-induced highly interconnected peanut-like structure and boron heteroatom framework could provide a continuous electron pathway to reduce the irreversible lithium ion loss during rapid cycling. This work provides insight into the development of the heteroatom-doped Si-based anodes with stable cycling performance for LIBs.</description><subject>Anode effect</subject><subject>Biomaterials</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell structure</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Energy</subject><subject>Interfacial properties</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Peanuts</subject><subject>Physical Chemistry</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Sol-gel processes</subject><subject>Thermal reduction</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhSMEEsvCBagiURvGdn6cElb8SUg0UFt2Mt71ksTBdgo67sANOQmGRaKjmTcavfdG-rLslMI5BagvAmVlIwgwSoDWRZp72YKKqiY1FeV-2gHSsWT0MDsKYQtQFFUFi8xcOe_GfIMRvVPRDaRzE3Z5sL1t3fj5_tEqr5NjQjXOkfT2BfPWDZMLNmLIcVS6T9q7cZ331mAacWPngdgU0iqmXovhODswqg948qvL7Pnm-ml1Rx4eb-9Xlw-k5bSJRDAqgAkUlIPpmDFKd0YzrVRTgykZcoZFTauSKs4bFFq3mnMo6gKwapDyZXa26528e50xRLl1sx_TS8kqzlnFmqZILrZztd6F4NHIydtB-TdJQX7zlDueMvGUPzwlpBDfhUIyj2v0f9X_pL4ALBV60A</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Fang-Zhou</creator><creator>Ma, Yuan-Yuan</creator><creator>Jiang, Miao-Miao</creator><creator>Luo, Wei</creator><creator>Yang, Jian-Ping</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4382-4301</orcidid><orcidid>https://orcid.org/0000-0003-1495-270X</orcidid></search><sort><creationdate>20220401</creationdate><title>Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries</title><author>Zhang, Fang-Zhou ; Ma, Yuan-Yuan ; Jiang, Miao-Miao ; Luo, Wei ; Yang, Jian-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anode effect</topic><topic>Biomaterials</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell structure</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Energy</topic><topic>Interfacial properties</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Peanuts</topic><topic>Physical Chemistry</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Sol-gel processes</topic><topic>Thermal reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fang-Zhou</creatorcontrib><creatorcontrib>Ma, Yuan-Yuan</creatorcontrib><creatorcontrib>Jiang, Miao-Miao</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Yang, Jian-Ping</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fang-Zhou</au><au>Ma, Yuan-Yuan</au><au>Jiang, Miao-Miao</au><au>Luo, Wei</au><au>Yang, Jian-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>1276</spage><epage>1283</epage><pages>1276-1283</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Carbon coated Si core–shell structures have been proposed to solve the adverse effects of Si-based anode. However, designing ideal core–shell architecture with excellent surface and interface properties is still a significant challenge. Herein, a novel peanut-like structure of B-doped silicon/carbon nanoparticle (Si@B-C) synthesized by sol–gel process and subsequent thermal reduction is reported. The peanut-like Si@B-C electrode demonstrates a superior cyclability of 534 mAh·g −1 after 1000 cycles at high current density of 1000 mA·g −1 . The exceptional electrochemical performance is attributed to the boric acid-induced highly interconnected peanut-like structure and boron heteroatom framework could provide a continuous electron pathway to reduce the irreversible lithium ion loss during rapid cycling. This work provides insight into the development of the heteroatom-doped Si-based anodes with stable cycling performance for LIBs.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-021-01741-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4382-4301</orcidid><orcidid>https://orcid.org/0000-0003-1495-270X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022-04, Vol.41 (4), p.1276-1283
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2633262994
source Springer Link
subjects Anode effect
Biomaterials
Boron
Carbon
Chemistry and Materials Science
Core-shell structure
Cycles
Electrochemical analysis
Energy
Interfacial properties
Lithium
Lithium-ion batteries
Materials Engineering
Materials Science
Metallic Materials
Nanoparticles
Nanoscale Science and Technology
Original Article
Peanuts
Physical Chemistry
Rechargeable batteries
Silicon
Sol-gel processes
Thermal reduction
title Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T13%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20heteroatom-doped%20silicon%E2%80%93carbon%20peanut-like%20composites%20enables%20long%20life%20lithium-ion%20batteries&rft.jtitle=Rare%20metals&rft.au=Zhang,%20Fang-Zhou&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=1276&rft.epage=1283&rft.pages=1276-1283&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-021-01741-0&rft_dat=%3Cproquest_cross%3E2633262994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8218028e8130fd2ffabdfb2baa970f52e32e471651a339e8bbcb3304740e69e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633262994&rft_id=info:pmid/&rfr_iscdi=true