Loading…

Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis

•Low cyclic stability of layered δ-MnO2 supercapacitor electrode was investigated.•Na+ ions intercalation on the electrode surface was observed via EDAX and XPS analysis.•Slow charge/discharge process leads to permanent intercalation of Na+ electrolytic ion.•Prolonged cyclic test shows Na+ ions repl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2022-02, Vol.892, p.162199, Article 162199
Main Authors: Justin Raj, C., Manikandan, Ramu, Sivakumar, Periyasamy, Opar, David O., Dennyson Savariraj, A., Cho, Won-Je, Jung, Hyun, Kim, Byung Chul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3
cites cdi_FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3
container_end_page
container_issue
container_start_page 162199
container_title Journal of alloys and compounds
container_volume 892
creator Justin Raj, C.
Manikandan, Ramu
Sivakumar, Periyasamy
Opar, David O.
Dennyson Savariraj, A.
Cho, Won-Je
Jung, Hyun
Kim, Byung Chul
description •Low cyclic stability of layered δ-MnO2 supercapacitor electrode was investigated.•Na+ ions intercalation on the electrode surface was observed via EDAX and XPS analysis.•Slow charge/discharge process leads to permanent intercalation of Na+ electrolytic ion.•Prolonged cyclic test shows Na+ ions replaced some host K ions in layered δ-MnO2. [Display omitted] Herein, we report the electrochemical energy storage performance of δ-MnO2 (K-birnessite MnO2) as supercapacitor electrode material in Na2SO4 aqueous electrolyte. The electrode exhibited considerable electrochemical performances due to the fast intercalation/deintercalation reactions of Na+ on the pseudocapacitive MnO2 surface. However, a long-term cyclic stability test of the electrode at a low specific current (1 A g−1) demonstrated a decline in its initial capacitance value to the tune of ~ 21%. To quantify the above discrepancy, the electrochemical intercalation of Na+ ions on the electrode surface was quantitatively studied employing electrochemical impedance spectroscopy, EDAX analysis and X-ray photoelectron spectroscopy. Further, the surface of the electrode was analyzed by performing complete charge and charge/discharge measurements at a low specific current of 0.1 A g−1. These results disclosed that, besides the surface intercalation/deintercalation reactions, some Na+ ions have permanently substituted into the bulk (layer) of δ-MnO2 by replacing the host K ions from the layered nanostructure. Thus, this finding suggests that Na+ ions replaced in the site of K in δ-MnO2 considerably affect the electrochemical properties of the supercapacitor electrode.
doi_str_mv 10.1016/j.jallcom.2021.162199
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620965507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821036094</els_id><sourcerecordid>2620965507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3</originalsourceid><addsrcrecordid>eNqFkM1OGzEUhS0EEiHlEZAssZ7UPzMemw1CEbSVqLKBtWXs68bTyTixZ6jyEH0bnoNnqlHCuitLV9858vkQuqJkQQkVX7tFZ_rexs2CEUYXVDCq1AmaUdnyqhZCnaIZUaypJJfyHF3k3BFCqOJ0hv6uUvgVBhw9tmZrbBjNYAE7sGaPfUzYYN_HP5CqPvwG_P5W_RxWDJvdBHHKOE9bSMdggaEHO6bo4AY_rQHvJjOMpXEMr1DQ5E2pNoP75OwaNsGavtxMv88hf0Fn3vQZLo_vHD0_3D8tv1ePq28_lnePleW8HSvmmOWuJk5QD9JCA1LJFyaMrD23xgnFVTlSUG1DVS2gYe6lbqUVUARZz-fo-tC7TbEsyaPu4pTKJ7JmghElmoa0hWoOlE0x5wReb1PYmLTXlOgP87rTR_P6w7w-mC-520MOyoTXAElnG6BodSGV3drF8J-Gf-pikpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620965507</pqid></control><display><type>article</type><title>Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis</title><source>ScienceDirect Journals</source><creator>Justin Raj, C. ; Manikandan, Ramu ; Sivakumar, Periyasamy ; Opar, David O. ; Dennyson Savariraj, A. ; Cho, Won-Je ; Jung, Hyun ; Kim, Byung Chul</creator><creatorcontrib>Justin Raj, C. ; Manikandan, Ramu ; Sivakumar, Periyasamy ; Opar, David O. ; Dennyson Savariraj, A. ; Cho, Won-Je ; Jung, Hyun ; Kim, Byung Chul</creatorcontrib><description>•Low cyclic stability of layered δ-MnO2 supercapacitor electrode was investigated.•Na+ ions intercalation on the electrode surface was observed via EDAX and XPS analysis.•Slow charge/discharge process leads to permanent intercalation of Na+ electrolytic ion.•Prolonged cyclic test shows Na+ ions replaced some host K ions in layered δ-MnO2. [Display omitted] Herein, we report the electrochemical energy storage performance of δ-MnO2 (K-birnessite MnO2) as supercapacitor electrode material in Na2SO4 aqueous electrolyte. The electrode exhibited considerable electrochemical performances due to the fast intercalation/deintercalation reactions of Na+ on the pseudocapacitive MnO2 surface. However, a long-term cyclic stability test of the electrode at a low specific current (1 A g−1) demonstrated a decline in its initial capacitance value to the tune of ~ 21%. To quantify the above discrepancy, the electrochemical intercalation of Na+ ions on the electrode surface was quantitatively studied employing electrochemical impedance spectroscopy, EDAX analysis and X-ray photoelectron spectroscopy. Further, the surface of the electrode was analyzed by performing complete charge and charge/discharge measurements at a low specific current of 0.1 A g−1. These results disclosed that, besides the surface intercalation/deintercalation reactions, some Na+ ions have permanently substituted into the bulk (layer) of δ-MnO2 by replacing the host K ions from the layered nanostructure. Thus, this finding suggests that Na+ ions replaced in the site of K in δ-MnO2 considerably affect the electrochemical properties of the supercapacitor electrode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.162199</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aqueous electrolytes ; Capacitance ; Chemical reactions ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Energy storage ; Impedance spectroscopy ; Intercalation ; Ion intercalation ; Layered nanostructure ; Manganese dioxide ; Manganese oxide ; Photoelectrons ; Spectrum analysis ; Stability tests ; Supercapacitor ; Supercapacitors ; Surface stability</subject><ispartof>Journal of alloys and compounds, 2022-02, Vol.892, p.162199, Article 162199</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3</citedby><cites>FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Justin Raj, C.</creatorcontrib><creatorcontrib>Manikandan, Ramu</creatorcontrib><creatorcontrib>Sivakumar, Periyasamy</creatorcontrib><creatorcontrib>Opar, David O.</creatorcontrib><creatorcontrib>Dennyson Savariraj, A.</creatorcontrib><creatorcontrib>Cho, Won-Je</creatorcontrib><creatorcontrib>Jung, Hyun</creatorcontrib><creatorcontrib>Kim, Byung Chul</creatorcontrib><title>Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis</title><title>Journal of alloys and compounds</title><description>•Low cyclic stability of layered δ-MnO2 supercapacitor electrode was investigated.•Na+ ions intercalation on the electrode surface was observed via EDAX and XPS analysis.•Slow charge/discharge process leads to permanent intercalation of Na+ electrolytic ion.•Prolonged cyclic test shows Na+ ions replaced some host K ions in layered δ-MnO2. [Display omitted] Herein, we report the electrochemical energy storage performance of δ-MnO2 (K-birnessite MnO2) as supercapacitor electrode material in Na2SO4 aqueous electrolyte. The electrode exhibited considerable electrochemical performances due to the fast intercalation/deintercalation reactions of Na+ on the pseudocapacitive MnO2 surface. However, a long-term cyclic stability test of the electrode at a low specific current (1 A g−1) demonstrated a decline in its initial capacitance value to the tune of ~ 21%. To quantify the above discrepancy, the electrochemical intercalation of Na+ ions on the electrode surface was quantitatively studied employing electrochemical impedance spectroscopy, EDAX analysis and X-ray photoelectron spectroscopy. Further, the surface of the electrode was analyzed by performing complete charge and charge/discharge measurements at a low specific current of 0.1 A g−1. These results disclosed that, besides the surface intercalation/deintercalation reactions, some Na+ ions have permanently substituted into the bulk (layer) of δ-MnO2 by replacing the host K ions from the layered nanostructure. Thus, this finding suggests that Na+ ions replaced in the site of K in δ-MnO2 considerably affect the electrochemical properties of the supercapacitor electrode.</description><subject>Aqueous electrolytes</subject><subject>Capacitance</subject><subject>Chemical reactions</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Impedance spectroscopy</subject><subject>Intercalation</subject><subject>Ion intercalation</subject><subject>Layered nanostructure</subject><subject>Manganese dioxide</subject><subject>Manganese oxide</subject><subject>Photoelectrons</subject><subject>Spectrum analysis</subject><subject>Stability tests</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Surface stability</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OGzEUhS0EEiHlEZAssZ7UPzMemw1CEbSVqLKBtWXs68bTyTixZ6jyEH0bnoNnqlHCuitLV9858vkQuqJkQQkVX7tFZ_rexs2CEUYXVDCq1AmaUdnyqhZCnaIZUaypJJfyHF3k3BFCqOJ0hv6uUvgVBhw9tmZrbBjNYAE7sGaPfUzYYN_HP5CqPvwG_P5W_RxWDJvdBHHKOE9bSMdggaEHO6bo4AY_rQHvJjOMpXEMr1DQ5E2pNoP75OwaNsGavtxMv88hf0Fn3vQZLo_vHD0_3D8tv1ePq28_lnePleW8HSvmmOWuJk5QD9JCA1LJFyaMrD23xgnFVTlSUG1DVS2gYe6lbqUVUARZz-fo-tC7TbEsyaPu4pTKJ7JmghElmoa0hWoOlE0x5wReb1PYmLTXlOgP87rTR_P6w7w-mC-520MOyoTXAElnG6BodSGV3drF8J-Gf-pikpw</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Justin Raj, C.</creator><creator>Manikandan, Ramu</creator><creator>Sivakumar, Periyasamy</creator><creator>Opar, David O.</creator><creator>Dennyson Savariraj, A.</creator><creator>Cho, Won-Je</creator><creator>Jung, Hyun</creator><creator>Kim, Byung Chul</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220205</creationdate><title>Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis</title><author>Justin Raj, C. ; Manikandan, Ramu ; Sivakumar, Periyasamy ; Opar, David O. ; Dennyson Savariraj, A. ; Cho, Won-Je ; Jung, Hyun ; Kim, Byung Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Capacitance</topic><topic>Chemical reactions</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Impedance spectroscopy</topic><topic>Intercalation</topic><topic>Ion intercalation</topic><topic>Layered nanostructure</topic><topic>Manganese dioxide</topic><topic>Manganese oxide</topic><topic>Photoelectrons</topic><topic>Spectrum analysis</topic><topic>Stability tests</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Justin Raj, C.</creatorcontrib><creatorcontrib>Manikandan, Ramu</creatorcontrib><creatorcontrib>Sivakumar, Periyasamy</creatorcontrib><creatorcontrib>Opar, David O.</creatorcontrib><creatorcontrib>Dennyson Savariraj, A.</creatorcontrib><creatorcontrib>Cho, Won-Je</creatorcontrib><creatorcontrib>Jung, Hyun</creatorcontrib><creatorcontrib>Kim, Byung Chul</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Justin Raj, C.</au><au>Manikandan, Ramu</au><au>Sivakumar, Periyasamy</au><au>Opar, David O.</au><au>Dennyson Savariraj, A.</au><au>Cho, Won-Je</au><au>Jung, Hyun</au><au>Kim, Byung Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-02-05</date><risdate>2022</risdate><volume>892</volume><spage>162199</spage><pages>162199-</pages><artnum>162199</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Low cyclic stability of layered δ-MnO2 supercapacitor electrode was investigated.•Na+ ions intercalation on the electrode surface was observed via EDAX and XPS analysis.•Slow charge/discharge process leads to permanent intercalation of Na+ electrolytic ion.•Prolonged cyclic test shows Na+ ions replaced some host K ions in layered δ-MnO2. [Display omitted] Herein, we report the electrochemical energy storage performance of δ-MnO2 (K-birnessite MnO2) as supercapacitor electrode material in Na2SO4 aqueous electrolyte. The electrode exhibited considerable electrochemical performances due to the fast intercalation/deintercalation reactions of Na+ on the pseudocapacitive MnO2 surface. However, a long-term cyclic stability test of the electrode at a low specific current (1 A g−1) demonstrated a decline in its initial capacitance value to the tune of ~ 21%. To quantify the above discrepancy, the electrochemical intercalation of Na+ ions on the electrode surface was quantitatively studied employing electrochemical impedance spectroscopy, EDAX analysis and X-ray photoelectron spectroscopy. Further, the surface of the electrode was analyzed by performing complete charge and charge/discharge measurements at a low specific current of 0.1 A g−1. These results disclosed that, besides the surface intercalation/deintercalation reactions, some Na+ ions have permanently substituted into the bulk (layer) of δ-MnO2 by replacing the host K ions from the layered nanostructure. Thus, this finding suggests that Na+ ions replaced in the site of K in δ-MnO2 considerably affect the electrochemical properties of the supercapacitor electrode.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.162199</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-02, Vol.892, p.162199, Article 162199
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2620965507
source ScienceDirect Journals
subjects Aqueous electrolytes
Capacitance
Chemical reactions
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Energy storage
Impedance spectroscopy
Intercalation
Ion intercalation
Layered nanostructure
Manganese dioxide
Manganese oxide
Photoelectrons
Spectrum analysis
Stability tests
Supercapacitor
Supercapacitors
Surface stability
title Origin of capacitance decay for a flower-like δ-MnO2 aqueous supercapacitor electrode: The quantitative surface and electrochemical analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T22%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20capacitance%20decay%20for%20a%20flower-like%20%CE%B4-MnO2%20aqueous%20supercapacitor%20electrode:%20The%20quantitative%20surface%20and%20electrochemical%20analysis&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Justin%20Raj,%20C.&rft.date=2022-02-05&rft.volume=892&rft.spage=162199&rft.pages=162199-&rft.artnum=162199&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.162199&rft_dat=%3Cproquest_cross%3E2620965507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-2d2c3d40d61fe8ce5e898b26a84f3cad6939e5e1e9751946e52db478c6e021cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620965507&rft_id=info:pmid/&rfr_iscdi=true