Loading…

Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa

Molecular dynamics simulation of the pressure-density-temperature properties of supercritical methane (CH 4 ) are made with the COMPASS II force field model in the range of 200–3000 K, 0.1–3.0 GPa, and 0.22–0.668 g·cm −3 , where 710 states are simulated using NPT ensemble, and 212 states are simulat...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermophysics 2022-02, Vol.43 (2), Article 22
Main Authors: Jiang, Siyu, Guo, Tao, Yu, Yang-Xin, Hu, Jiawen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3
cites cdi_FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3
container_end_page
container_issue 2
container_start_page
container_title International journal of thermophysics
container_volume 43
creator Jiang, Siyu
Guo, Tao
Yu, Yang-Xin
Hu, Jiawen
description Molecular dynamics simulation of the pressure-density-temperature properties of supercritical methane (CH 4 ) are made with the COMPASS II force field model in the range of 200–3000 K, 0.1–3.0 GPa, and 0.22–0.668 g·cm −3 , where 710 states are simulated using NPT ensemble, and 212 states are simulated using NVT ensemble. These results are in good agreement with experimental data and the calculated results from highly accurate reference model of Setzmann and Wagner (J Phys Chem Ref Data 20:1061–1155, 1991) and its extrapolation in the region where the reference model can be validated. The simulation results are calibrated with the reference model. The calibrated simulations results and the reference model are used simultaneously to develop an accurate cubic equation of state for supercritical CH 4 in the range of about 300–3000 K and 0–3 GPa (0–0.53 g·cm −3 ). The equation are tested against experimental and simulated data at high temperatures and pressures. Compared with the overwhelming majority of experimental results, the volume deviations are within 0.4 % to 1.1 %, with averages of about 0.1 % to 0.4 %; Compared with the molecular simulation results in literature and this work, the volume deviations are within 0.6 % to 3.7 %, with averages of about 0.1 % to 1.2 %. The equation can accurately predict the fugacity coefficients, residual enthalpies, and entropies and other thermodynamic properties.
doi_str_mv 10.1007/s10765-021-02952-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616649129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616649129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdpkjZLGZ84g8I44C6kaaIdOm0naRfzN36LX2acCu5cXO7hcB5wEDoncEkAsqtAIBM8AUriSU4TdoAmhGc0kVxkh2gCRPJE0vztGJ2EsAYAmcl0grpFW1sz1Nrjm12jN5UJeFltItFXbYN1U2KNZ0NRGXy7HUaydXjZ697uwdBZb3zVV0bXeGH7D91YvOpw3-I0tnx9Pu1DRrx40afoyOk62LPfP0Wru9vX2UMyf75_nF3PE5MS2SeZoEIK4srCaQ6csRRKZ510pKDMUbCcCCCpts5IKJgo8jLPDYdCksKwrEyn6GLM7Xy7HWzo1bodfBMrFRVECCYJlVFFR5XxbQjeOtX5aqP9ThFQP8uqcVkVl1X7ZRWLpnQ0hShu3q3_i_7H9Q0s5Xtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616649129</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa</title><source>Springer Link</source><creator>Jiang, Siyu ; Guo, Tao ; Yu, Yang-Xin ; Hu, Jiawen</creator><creatorcontrib>Jiang, Siyu ; Guo, Tao ; Yu, Yang-Xin ; Hu, Jiawen</creatorcontrib><description>Molecular dynamics simulation of the pressure-density-temperature properties of supercritical methane (CH 4 ) are made with the COMPASS II force field model in the range of 200–3000 K, 0.1–3.0 GPa, and 0.22–0.668 g·cm −3 , where 710 states are simulated using NPT ensemble, and 212 states are simulated using NVT ensemble. These results are in good agreement with experimental data and the calculated results from highly accurate reference model of Setzmann and Wagner (J Phys Chem Ref Data 20:1061–1155, 1991) and its extrapolation in the region where the reference model can be validated. The simulation results are calibrated with the reference model. The calibrated simulations results and the reference model are used simultaneously to develop an accurate cubic equation of state for supercritical CH 4 in the range of about 300–3000 K and 0–3 GPa (0–0.53 g·cm −3 ). The equation are tested against experimental and simulated data at high temperatures and pressures. Compared with the overwhelming majority of experimental results, the volume deviations are within 0.4 % to 1.1 %, with averages of about 0.1 % to 0.4 %; Compared with the molecular simulation results in literature and this work, the volume deviations are within 0.6 % to 3.7 %, with averages of about 0.1 % to 1.2 %. The equation can accurately predict the fugacity coefficients, residual enthalpies, and entropies and other thermodynamic properties.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-021-02952-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Condensed Matter Physics ; Cubic equations ; Deviation ; Enthalpy ; Equations of state ; Fugacity ; Geophysics ; High temperature ; Industrial Chemistry/Chemical Engineering ; Methane ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Simulation ; Thermodynamic properties ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2022-02, Vol.43 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3</citedby><cites>FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3</cites><orcidid>0000-0001-5536-4483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Jiang, Siyu</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Yu, Yang-Xin</creatorcontrib><creatorcontrib>Hu, Jiawen</creatorcontrib><title>Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>Molecular dynamics simulation of the pressure-density-temperature properties of supercritical methane (CH 4 ) are made with the COMPASS II force field model in the range of 200–3000 K, 0.1–3.0 GPa, and 0.22–0.668 g·cm −3 , where 710 states are simulated using NPT ensemble, and 212 states are simulated using NVT ensemble. These results are in good agreement with experimental data and the calculated results from highly accurate reference model of Setzmann and Wagner (J Phys Chem Ref Data 20:1061–1155, 1991) and its extrapolation in the region where the reference model can be validated. The simulation results are calibrated with the reference model. The calibrated simulations results and the reference model are used simultaneously to develop an accurate cubic equation of state for supercritical CH 4 in the range of about 300–3000 K and 0–3 GPa (0–0.53 g·cm −3 ). The equation are tested against experimental and simulated data at high temperatures and pressures. Compared with the overwhelming majority of experimental results, the volume deviations are within 0.4 % to 1.1 %, with averages of about 0.1 % to 0.4 %; Compared with the molecular simulation results in literature and this work, the volume deviations are within 0.6 % to 3.7 %, with averages of about 0.1 % to 1.2 %. The equation can accurately predict the fugacity coefficients, residual enthalpies, and entropies and other thermodynamic properties.</description><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Cubic equations</subject><subject>Deviation</subject><subject>Enthalpy</subject><subject>Equations of state</subject><subject>Fugacity</subject><subject>Geophysics</subject><subject>High temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methane</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Simulation</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdpkjZLGZ84g8I44C6kaaIdOm0naRfzN36LX2acCu5cXO7hcB5wEDoncEkAsqtAIBM8AUriSU4TdoAmhGc0kVxkh2gCRPJE0vztGJ2EsAYAmcl0grpFW1sz1Nrjm12jN5UJeFltItFXbYN1U2KNZ0NRGXy7HUaydXjZ697uwdBZb3zVV0bXeGH7D91YvOpw3-I0tnx9Pu1DRrx40afoyOk62LPfP0Wru9vX2UMyf75_nF3PE5MS2SeZoEIK4srCaQ6csRRKZ510pKDMUbCcCCCpts5IKJgo8jLPDYdCksKwrEyn6GLM7Xy7HWzo1bodfBMrFRVECCYJlVFFR5XxbQjeOtX5aqP9ThFQP8uqcVkVl1X7ZRWLpnQ0hShu3q3_i_7H9Q0s5Xtw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jiang, Siyu</creator><creator>Guo, Tao</creator><creator>Yu, Yang-Xin</creator><creator>Hu, Jiawen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5536-4483</orcidid></search><sort><creationdate>20220201</creationdate><title>Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa</title><author>Jiang, Siyu ; Guo, Tao ; Yu, Yang-Xin ; Hu, Jiawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Cubic equations</topic><topic>Deviation</topic><topic>Enthalpy</topic><topic>Equations of state</topic><topic>Fugacity</topic><topic>Geophysics</topic><topic>High temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methane</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Simulation</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Siyu</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Yu, Yang-Xin</creatorcontrib><creatorcontrib>Hu, Jiawen</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Siyu</au><au>Guo, Tao</au><au>Yu, Yang-Xin</au><au>Hu, Jiawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><artnum>22</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>Molecular dynamics simulation of the pressure-density-temperature properties of supercritical methane (CH 4 ) are made with the COMPASS II force field model in the range of 200–3000 K, 0.1–3.0 GPa, and 0.22–0.668 g·cm −3 , where 710 states are simulated using NPT ensemble, and 212 states are simulated using NVT ensemble. These results are in good agreement with experimental data and the calculated results from highly accurate reference model of Setzmann and Wagner (J Phys Chem Ref Data 20:1061–1155, 1991) and its extrapolation in the region where the reference model can be validated. The simulation results are calibrated with the reference model. The calibrated simulations results and the reference model are used simultaneously to develop an accurate cubic equation of state for supercritical CH 4 in the range of about 300–3000 K and 0–3 GPa (0–0.53 g·cm −3 ). The equation are tested against experimental and simulated data at high temperatures and pressures. Compared with the overwhelming majority of experimental results, the volume deviations are within 0.4 % to 1.1 %, with averages of about 0.1 % to 0.4 %; Compared with the molecular simulation results in literature and this work, the volume deviations are within 0.6 % to 3.7 %, with averages of about 0.1 % to 1.2 %. The equation can accurately predict the fugacity coefficients, residual enthalpies, and entropies and other thermodynamic properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-021-02952-4</doi><orcidid>https://orcid.org/0000-0001-5536-4483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2022-02, Vol.43 (2), Article 22
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2616649129
source Springer Link
subjects Classical Mechanics
Condensed Matter Physics
Cubic equations
Deviation
Enthalpy
Equations of state
Fugacity
Geophysics
High temperature
Industrial Chemistry/Chemical Engineering
Methane
Molecular dynamics
Physical Chemistry
Physics
Physics and Astronomy
Simulation
Thermodynamic properties
Thermodynamics
title Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T10%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20and%20a%20Cubic%20Equation%20of%20State%20of%20Supercritical%20Methane%20Up%20to%203000%C2%A0K%20and%203000%C2%A0MPa&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Jiang,%20Siyu&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.artnum=22&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-021-02952-4&rft_dat=%3Cproquest_cross%3E2616649129%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7626961fdbfa5054430dfef9f1b24f20e516013aefc90b46b8d88c50b91bc47d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616649129&rft_id=info:pmid/&rfr_iscdi=true