Loading…

Optomechanical interface between telecom photons and spin quantum memory

Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechani...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2021-12, Vol.17 (12), p.1420-1425
Main Authors: Shandilya, Prasoon K., Lake, David P., Mitchell, Matthew J., Sukachev, Denis D., Barclay, Paul E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63
cites cdi_FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63
container_end_page 1425
container_issue 12
container_start_page 1420
container_title Nature physics
container_volume 17
creator Shandilya, Prasoon K.
Lake, David P.
Mitchell, Matthew J.
Sukachev, Denis D.
Barclay, Paul E.
description Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechanical memories. Here we demonstrate a novel approach based on cavity optomechanics that utilizes the susceptibility of spin qubits to strain. We use it to control electronic spins of nitrogen vacancy centres in diamond with photons in the 1,550 nm telecommunication wavelength band. This method does not involve qubit optical transitions and is insensitive to spectral diffusion. Furthermore, our approach can be applied to solid-state qubits in a wide variety of materials, expanding the toolbox for quantum information processing.Quantum networks require a connection between quantum memories and optical links, which often operate in different frequency ranges. An optomechanical device exploiting the strain dependence of a colour-centre spin provides such a spin–optics interface at room temperature.
doi_str_mv 10.1038/s41567-021-01364-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607919634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607919634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63</originalsourceid><addsrcrecordid>eNo9kMFLwzAchYMoOKf_gKeA52h-TZo0RxnqhMEueg5pmrCONumSFNl_73Ti6b3Dx3vwIXQP9BEoa54yh1pIQisgFJjghF2gBUhek4o3cPnfJbtGNznvKeWVALZA6-1U4ujszoTemgH3objkjXW4deXLuYCLG5yNI552scSQsQkdzlMf8GE2ocwjHt0Y0_EWXXkzZHf3l0v0-frysVqTzfbtffW8IZZxKKTzVjRKtq0UNetUTb3qugYAvJDeSwlWtjVlXijfdNxS6oWhynMhVQvSCLZED-fdKcXD7HLR-zincLrUlaBSgRKMn6jqTNkUc07O6yn1o0lHDVT_GNNnY_pkTP8a04x9A_JcXsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607919634</pqid></control><display><type>article</type><title>Optomechanical interface between telecom photons and spin quantum memory</title><source>Nature_系列刊</source><creator>Shandilya, Prasoon K. ; Lake, David P. ; Mitchell, Matthew J. ; Sukachev, Denis D. ; Barclay, Paul E.</creator><creatorcontrib>Shandilya, Prasoon K. ; Lake, David P. ; Mitchell, Matthew J. ; Sukachev, Denis D. ; Barclay, Paul E.</creatorcontrib><description>Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechanical memories. Here we demonstrate a novel approach based on cavity optomechanics that utilizes the susceptibility of spin qubits to strain. We use it to control electronic spins of nitrogen vacancy centres in diamond with photons in the 1,550 nm telecommunication wavelength band. This method does not involve qubit optical transitions and is insensitive to spectral diffusion. Furthermore, our approach can be applied to solid-state qubits in a wide variety of materials, expanding the toolbox for quantum information processing.Quantum networks require a connection between quantum memories and optical links, which often operate in different frequency ranges. An optomechanical device exploiting the strain dependence of a colour-centre spin provides such a spin–optics interface at room temperature.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01364-3</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Data processing ; Diamonds ; Frequency ranges ; Interfaces ; Lasers ; Magnetic fields ; Networks ; Optics ; Opto-mechanics ; Photons ; Quantum computing ; Quantum phenomena ; Qubits (quantum computing) ; Room temperature ; Telecommunications</subject><ispartof>Nature physics, 2021-12, Vol.17 (12), p.1420-1425</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63</citedby><cites>FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63</cites><orcidid>0000-0002-4273-2184 ; 0000-0002-9659-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Shandilya, Prasoon K.</creatorcontrib><creatorcontrib>Lake, David P.</creatorcontrib><creatorcontrib>Mitchell, Matthew J.</creatorcontrib><creatorcontrib>Sukachev, Denis D.</creatorcontrib><creatorcontrib>Barclay, Paul E.</creatorcontrib><title>Optomechanical interface between telecom photons and spin quantum memory</title><title>Nature physics</title><description>Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechanical memories. Here we demonstrate a novel approach based on cavity optomechanics that utilizes the susceptibility of spin qubits to strain. We use it to control electronic spins of nitrogen vacancy centres in diamond with photons in the 1,550 nm telecommunication wavelength band. This method does not involve qubit optical transitions and is insensitive to spectral diffusion. Furthermore, our approach can be applied to solid-state qubits in a wide variety of materials, expanding the toolbox for quantum information processing.Quantum networks require a connection between quantum memories and optical links, which often operate in different frequency ranges. An optomechanical device exploiting the strain dependence of a colour-centre spin provides such a spin–optics interface at room temperature.</description><subject>Data processing</subject><subject>Diamonds</subject><subject>Frequency ranges</subject><subject>Interfaces</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Networks</subject><subject>Optics</subject><subject>Opto-mechanics</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Room temperature</subject><subject>Telecommunications</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAchYMoOKf_gKeA52h-TZo0RxnqhMEueg5pmrCONumSFNl_73Ti6b3Dx3vwIXQP9BEoa54yh1pIQisgFJjghF2gBUhek4o3cPnfJbtGNznvKeWVALZA6-1U4ujszoTemgH3objkjXW4deXLuYCLG5yNI552scSQsQkdzlMf8GE2ocwjHt0Y0_EWXXkzZHf3l0v0-frysVqTzfbtffW8IZZxKKTzVjRKtq0UNetUTb3qugYAvJDeSwlWtjVlXijfdNxS6oWhynMhVQvSCLZED-fdKcXD7HLR-zincLrUlaBSgRKMn6jqTNkUc07O6yn1o0lHDVT_GNNnY_pkTP8a04x9A_JcXsk</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shandilya, Prasoon K.</creator><creator>Lake, David P.</creator><creator>Mitchell, Matthew J.</creator><creator>Sukachev, Denis D.</creator><creator>Barclay, Paul E.</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4273-2184</orcidid><orcidid>https://orcid.org/0000-0002-9659-5883</orcidid></search><sort><creationdate>20211201</creationdate><title>Optomechanical interface between telecom photons and spin quantum memory</title><author>Shandilya, Prasoon K. ; Lake, David P. ; Mitchell, Matthew J. ; Sukachev, Denis D. ; Barclay, Paul E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data processing</topic><topic>Diamonds</topic><topic>Frequency ranges</topic><topic>Interfaces</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Networks</topic><topic>Optics</topic><topic>Opto-mechanics</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Room temperature</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shandilya, Prasoon K.</creatorcontrib><creatorcontrib>Lake, David P.</creatorcontrib><creatorcontrib>Mitchell, Matthew J.</creatorcontrib><creatorcontrib>Sukachev, Denis D.</creatorcontrib><creatorcontrib>Barclay, Paul E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shandilya, Prasoon K.</au><au>Lake, David P.</au><au>Mitchell, Matthew J.</au><au>Sukachev, Denis D.</au><au>Barclay, Paul E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optomechanical interface between telecom photons and spin quantum memory</atitle><jtitle>Nature physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>1420</spage><epage>1425</epage><pages>1420-1425</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum networks enable a broad range of practical and fundamental applications spanning from distributed quantum computing to sensing and metrology. A cornerstone of such networks is an interface between telecom photons and quantum memories, which has proven challenging for the case of spin-mechanical memories. Here we demonstrate a novel approach based on cavity optomechanics that utilizes the susceptibility of spin qubits to strain. We use it to control electronic spins of nitrogen vacancy centres in diamond with photons in the 1,550 nm telecommunication wavelength band. This method does not involve qubit optical transitions and is insensitive to spectral diffusion. Furthermore, our approach can be applied to solid-state qubits in a wide variety of materials, expanding the toolbox for quantum information processing.Quantum networks require a connection between quantum memories and optical links, which often operate in different frequency ranges. An optomechanical device exploiting the strain dependence of a colour-centre spin provides such a spin–optics interface at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41567-021-01364-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4273-2184</orcidid><orcidid>https://orcid.org/0000-0002-9659-5883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-12, Vol.17 (12), p.1420-1425
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2607919634
source Nature_系列刊
subjects Data processing
Diamonds
Frequency ranges
Interfaces
Lasers
Magnetic fields
Networks
Optics
Opto-mechanics
Photons
Quantum computing
Quantum phenomena
Qubits (quantum computing)
Room temperature
Telecommunications
title Optomechanical interface between telecom photons and spin quantum memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optomechanical%20interface%20between%20telecom%20photons%20and%20spin%20quantum%20memory&rft.jtitle=Nature%20physics&rft.au=Shandilya,%20Prasoon%20K.&rft.date=2021-12-01&rft.volume=17&rft.issue=12&rft.spage=1420&rft.epage=1425&rft.pages=1420-1425&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01364-3&rft_dat=%3Cproquest_cross%3E2607919634%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-dfc6897bb7653d950f9dd8111f67ff771c7b503f69f8d4c00f6a09f4679b17a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607919634&rft_id=info:pmid/&rfr_iscdi=true