Loading…

Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra

To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Us...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2021-09, Vol.126 (9), p.n/a
Main Authors: Weigt, D. M., Jackman, C. M., Vogt, M. F., Manners, H., Dunn, W. R., Gladstone, G. R., Kraft, R., Branduardi‐Raymont, G., Louis, C. K., McEntee, S. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3
cites cdi_FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 126
creator Weigt, D. M.
Jackman, C. M.
Vogt, M. F.
Manners, H.
Dunn, W. R.
Gladstone, G. R.
Kraft, R.
Branduardi‐Raymont, G.
Louis, C. K.
McEntee, S. C.
description To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities). Plain Language Summary The auroral emissions (northern and southern lights) on Jupiter are the most powerful in our Solar System and have been observed across the electromagnetic spectrum. The cause, or driver, of Jupiter's auroras is still an open question with lots of scientific debate. The solar wind can have an effect, as can Jupiter's volcanic moon Io. The plasma and magnetic field interactions can produce auroras on Jupiter in the X‐ray waveband. These powerful X‐ray emissions can be observed by telescopes like the Chandra X‐ray Observatory (CXO) that orbit Earth. The X‐ray data we analyze here have been found to flash or pulsate at certain periods, spanning the ∼20 years Chandra has observed Jupiter. We use mapping and timing analysis techniques to analyze the entire catalog from the high‐resolution camera on‐board Chandra. We report significant auroral X‐ray regions and pulsations in the No
doi_str_mv 10.1029/2021JA029243
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576648076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576648076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOObufICAF95YTU7aNL0sY26OiTAneFfSJNWMra1Jy9idj-Az-iRGpuCV5-Kcn5-P_8CP0Dkl15RAdgME6DwPCmJ2hAZAeRZlMYHjX80EOUUj79ckjAgWTQbofvwqnVSdcdZ3VnncVHjetzYYlx4_f75_LOUe571rnNzgWdPhxzasydZ6b5va4ydv6xccUmrt5Bk6qeTGm9HPHaLV7WQ1nkWLh-ndOF9EisWJiJTIWApQUc2ztJKckaykhPISuOQAqSBKABhNiNKaQFpqXYpECMO1KWPFhujiENu65q03vivWTe_q8LGAJOU8FiTlgbo6UMo13jtTFa2zW-n2BSXFd2XF38oCzg74zm7M_l-2mE-XecJ5JtgXTfZsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576648076</pqid></control><display><type>article</type><title>Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra</title><source>Wiley-Blackwell Journals</source><creator>Weigt, D. M. ; Jackman, C. M. ; Vogt, M. F. ; Manners, H. ; Dunn, W. R. ; Gladstone, G. R. ; Kraft, R. ; Branduardi‐Raymont, G. ; Louis, C. K. ; McEntee, S. C.</creator><creatorcontrib>Weigt, D. M. ; Jackman, C. M. ; Vogt, M. F. ; Manners, H. ; Dunn, W. R. ; Gladstone, G. R. ; Kraft, R. ; Branduardi‐Raymont, G. ; Louis, C. K. ; McEntee, S. C.</creatorcontrib><description>To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities). Plain Language Summary The auroral emissions (northern and southern lights) on Jupiter are the most powerful in our Solar System and have been observed across the electromagnetic spectrum. The cause, or driver, of Jupiter's auroras is still an open question with lots of scientific debate. The solar wind can have an effect, as can Jupiter's volcanic moon Io. The plasma and magnetic field interactions can produce auroras on Jupiter in the X‐ray waveband. These powerful X‐ray emissions can be observed by telescopes like the Chandra X‐ray Observatory (CXO) that orbit Earth. The X‐ray data we analyze here have been found to flash or pulsate at certain periods, spanning the ∼20 years Chandra has observed Jupiter. We use mapping and timing analysis techniques to analyze the entire catalog from the high‐resolution camera on‐board Chandra. We report significant auroral X‐ray regions and pulsations in the North to help us provide an answer for the possible multiple X‐ray drivers. Key Points We present the first statistical study looking at the behavior of Jupiter's northern X‐ray auroral hot spot from 20 years of Chandra data The X‐rays map close to the magnetopause from noon to dusk, with the center of the averaged hot spot emissions mapping to noon Our analysis suggests that the X‐ray driver(s) may be linked with ultra‐low frequency wave activity along the magnetopause</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2021JA029243</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aurora ; Auroral emissions ; Auroras ; Brightness ; Hot spots (geology) ; jovian magnetosphere ; Jupiter ; Jupiter atmosphere ; Magnetic fields ; Magnetopause ; magnetosphere ; Mapping ; Mean ; Morphology ; Photons ; Planetary magnetic fields ; Solar system ; Solar wind ; Solar wind effects ; Space telescopes ; Telescopes ; ULF waves ; Wind effects ; X‐ray aurora</subject><ispartof>Journal of geophysical research. Space physics, 2021-09, Vol.126 (9), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3</citedby><cites>FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3</cites><orcidid>0000-0002-6620-6357 ; 0000-0002-3276-7420 ; 0000-0003-0060-072X ; 0000-0003-0635-7361 ; 0000-0002-0383-6917 ; 0000-0001-5427-6537 ; 0000-0002-9552-8822 ; 0000-0003-4885-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JA029243$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JA029243$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Weigt, D. M.</creatorcontrib><creatorcontrib>Jackman, C. M.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Manners, H.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Kraft, R.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Louis, C. K.</creatorcontrib><creatorcontrib>McEntee, S. C.</creatorcontrib><title>Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra</title><title>Journal of geophysical research. Space physics</title><description>To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities). Plain Language Summary The auroral emissions (northern and southern lights) on Jupiter are the most powerful in our Solar System and have been observed across the electromagnetic spectrum. The cause, or driver, of Jupiter's auroras is still an open question with lots of scientific debate. The solar wind can have an effect, as can Jupiter's volcanic moon Io. The plasma and magnetic field interactions can produce auroras on Jupiter in the X‐ray waveband. These powerful X‐ray emissions can be observed by telescopes like the Chandra X‐ray Observatory (CXO) that orbit Earth. The X‐ray data we analyze here have been found to flash or pulsate at certain periods, spanning the ∼20 years Chandra has observed Jupiter. We use mapping and timing analysis techniques to analyze the entire catalog from the high‐resolution camera on‐board Chandra. We report significant auroral X‐ray regions and pulsations in the North to help us provide an answer for the possible multiple X‐ray drivers. Key Points We present the first statistical study looking at the behavior of Jupiter's northern X‐ray auroral hot spot from 20 years of Chandra data The X‐rays map close to the magnetopause from noon to dusk, with the center of the averaged hot spot emissions mapping to noon Our analysis suggests that the X‐ray driver(s) may be linked with ultra‐low frequency wave activity along the magnetopause</description><subject>aurora</subject><subject>Auroral emissions</subject><subject>Auroras</subject><subject>Brightness</subject><subject>Hot spots (geology)</subject><subject>jovian magnetosphere</subject><subject>Jupiter</subject><subject>Jupiter atmosphere</subject><subject>Magnetic fields</subject><subject>Magnetopause</subject><subject>magnetosphere</subject><subject>Mapping</subject><subject>Mean</subject><subject>Morphology</subject><subject>Photons</subject><subject>Planetary magnetic fields</subject><subject>Solar system</subject><subject>Solar wind</subject><subject>Solar wind effects</subject><subject>Space telescopes</subject><subject>Telescopes</subject><subject>ULF waves</subject><subject>Wind effects</subject><subject>X‐ray aurora</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kNFKwzAUhoMoOObufICAF95YTU7aNL0sY26OiTAneFfSJNWMra1Jy9idj-Az-iRGpuCV5-Kcn5-P_8CP0Dkl15RAdgME6DwPCmJ2hAZAeRZlMYHjX80EOUUj79ckjAgWTQbofvwqnVSdcdZ3VnncVHjetzYYlx4_f75_LOUe571rnNzgWdPhxzasydZ6b5va4ydv6xccUmrt5Bk6qeTGm9HPHaLV7WQ1nkWLh-ndOF9EisWJiJTIWApQUc2ztJKckaykhPISuOQAqSBKABhNiNKaQFpqXYpECMO1KWPFhujiENu65q03vivWTe_q8LGAJOU8FiTlgbo6UMo13jtTFa2zW-n2BSXFd2XF38oCzg74zm7M_l-2mE-XecJ5JtgXTfZsBg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Weigt, D. M.</creator><creator>Jackman, C. M.</creator><creator>Vogt, M. F.</creator><creator>Manners, H.</creator><creator>Dunn, W. R.</creator><creator>Gladstone, G. R.</creator><creator>Kraft, R.</creator><creator>Branduardi‐Raymont, G.</creator><creator>Louis, C. K.</creator><creator>McEntee, S. C.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6620-6357</orcidid><orcidid>https://orcid.org/0000-0002-3276-7420</orcidid><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0003-0635-7361</orcidid><orcidid>https://orcid.org/0000-0002-0383-6917</orcidid><orcidid>https://orcid.org/0000-0001-5427-6537</orcidid><orcidid>https://orcid.org/0000-0002-9552-8822</orcidid><orcidid>https://orcid.org/0000-0003-4885-8615</orcidid></search><sort><creationdate>202109</creationdate><title>Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra</title><author>Weigt, D. M. ; Jackman, C. M. ; Vogt, M. F. ; Manners, H. ; Dunn, W. R. ; Gladstone, G. R. ; Kraft, R. ; Branduardi‐Raymont, G. ; Louis, C. K. ; McEntee, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aurora</topic><topic>Auroral emissions</topic><topic>Auroras</topic><topic>Brightness</topic><topic>Hot spots (geology)</topic><topic>jovian magnetosphere</topic><topic>Jupiter</topic><topic>Jupiter atmosphere</topic><topic>Magnetic fields</topic><topic>Magnetopause</topic><topic>magnetosphere</topic><topic>Mapping</topic><topic>Mean</topic><topic>Morphology</topic><topic>Photons</topic><topic>Planetary magnetic fields</topic><topic>Solar system</topic><topic>Solar wind</topic><topic>Solar wind effects</topic><topic>Space telescopes</topic><topic>Telescopes</topic><topic>ULF waves</topic><topic>Wind effects</topic><topic>X‐ray aurora</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigt, D. M.</creatorcontrib><creatorcontrib>Jackman, C. M.</creatorcontrib><creatorcontrib>Vogt, M. F.</creatorcontrib><creatorcontrib>Manners, H.</creatorcontrib><creatorcontrib>Dunn, W. R.</creatorcontrib><creatorcontrib>Gladstone, G. R.</creatorcontrib><creatorcontrib>Kraft, R.</creatorcontrib><creatorcontrib>Branduardi‐Raymont, G.</creatorcontrib><creatorcontrib>Louis, C. K.</creatorcontrib><creatorcontrib>McEntee, S. C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigt, D. M.</au><au>Jackman, C. M.</au><au>Vogt, M. F.</au><au>Manners, H.</au><au>Dunn, W. R.</au><au>Gladstone, G. R.</au><au>Kraft, R.</au><au>Branduardi‐Raymont, G.</au><au>Louis, C. K.</au><au>McEntee, S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2021-09</date><risdate>2021</risdate><volume>126</volume><issue>9</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities). Plain Language Summary The auroral emissions (northern and southern lights) on Jupiter are the most powerful in our Solar System and have been observed across the electromagnetic spectrum. The cause, or driver, of Jupiter's auroras is still an open question with lots of scientific debate. The solar wind can have an effect, as can Jupiter's volcanic moon Io. The plasma and magnetic field interactions can produce auroras on Jupiter in the X‐ray waveband. These powerful X‐ray emissions can be observed by telescopes like the Chandra X‐ray Observatory (CXO) that orbit Earth. The X‐ray data we analyze here have been found to flash or pulsate at certain periods, spanning the ∼20 years Chandra has observed Jupiter. We use mapping and timing analysis techniques to analyze the entire catalog from the high‐resolution camera on‐board Chandra. We report significant auroral X‐ray regions and pulsations in the North to help us provide an answer for the possible multiple X‐ray drivers. Key Points We present the first statistical study looking at the behavior of Jupiter's northern X‐ray auroral hot spot from 20 years of Chandra data The X‐rays map close to the magnetopause from noon to dusk, with the center of the averaged hot spot emissions mapping to noon Our analysis suggests that the X‐ray driver(s) may be linked with ultra‐low frequency wave activity along the magnetopause</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JA029243</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6620-6357</orcidid><orcidid>https://orcid.org/0000-0002-3276-7420</orcidid><orcidid>https://orcid.org/0000-0003-0060-072X</orcidid><orcidid>https://orcid.org/0000-0003-0635-7361</orcidid><orcidid>https://orcid.org/0000-0002-0383-6917</orcidid><orcidid>https://orcid.org/0000-0001-5427-6537</orcidid><orcidid>https://orcid.org/0000-0002-9552-8822</orcidid><orcidid>https://orcid.org/0000-0003-4885-8615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2021-09, Vol.126 (9), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2576648076
source Wiley-Blackwell Journals
subjects aurora
Auroral emissions
Auroras
Brightness
Hot spots (geology)
jovian magnetosphere
Jupiter
Jupiter atmosphere
Magnetic fields
Magnetopause
magnetosphere
Mapping
Mean
Morphology
Photons
Planetary magnetic fields
Solar system
Solar wind
Solar wind effects
Space telescopes
Telescopes
ULF waves
Wind effects
X‐ray aurora
title Characteristics of Jupiter's X‐Ray Auroral Hot Spot Emissions Using Chandra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T04%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20Jupiter's%20X%E2%80%90Ray%20Auroral%20Hot%20Spot%20Emissions%20Using%20Chandra&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Weigt,%20D.%20M.&rft.date=2021-09&rft.volume=126&rft.issue=9&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2021JA029243&rft_dat=%3Cproquest_cross%3E2576648076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3458-c893722f1d697fa6309b1016b26a622780c822ed00cdd027bddb8588e6deb4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576648076&rft_id=info:pmid/&rfr_iscdi=true