Loading…

Transpiration through hydrogels

We present experiments and theory relating to transpiration through unrestrained hydrogel beads in contact with a water reservoir below and air above. Experimentally, we find that saturated hydrogel beads shrink until a steady state is reached in which water flows continuously through the beads. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-10, Vol.925, Article A8
Main Authors: Etzold, Merlin A., Linden, P.F., Worster, M. Grae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83
cites cdi_FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 925
creator Etzold, Merlin A.
Linden, P.F.
Worster, M. Grae
description We present experiments and theory relating to transpiration through unrestrained hydrogel beads in contact with a water reservoir below and air above. Experimentally, we find that saturated hydrogel beads shrink until a steady state is reached in which water flows continuously through the beads. The size of the bead in steady state is sensitive to the evaporation rate, which depends on the relative humidity and speed of the surrounding air, and to the pressure head imposed by the fluid reservoir. Specifically, the bead size decreases with increasing pressure head or evaporation rate. Our one-dimensional model proposes that transport in the hydrogel is driven by gradients in osmotic pressure, caused by gradients in polymer concentration in the hydrogel that correspond to gradients in swelling. If the evaporation rate or the pressure head changes, the adjustment of this gradient requires the bead to change shape and size. Smaller beads have larger gradients of osmotic pressure, which drive higher transpiration rates and can draw water against larger pressure heads.
doi_str_mv 10.1017/jfm.2021.608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563412597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_608</cupid><sourcerecordid>2563412597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83</originalsourceid><addsrcrecordid>eNptkDtPwzAUhS0EEqGwsVOJlYR7bceOR1TxkiqxlNmy6zzVJMVOhv57XLUSC9NZvnOO9BFyj5AhoHzuqj6jQDETUFyQBLlQqRQ8vyQJAKUpIoVrchNCB4AMlEzIw8abIexbb6Z2HJZT48e5bpbNwfmxLnfhllxVZhfKu3MuyPfb62b1ka6_3j9XL-t0yzhMKXcUUEhuWS6UMZQ7VyjuGEppOaNGWJkLJhkwwxUqkXNalNZaJ7i1whZsQR5Pu3s__sxlmHQ3zn6Il5rGJkeaKxmppxO19WMIvqz03re98QeNoI8KdFSgjwp0VBDx7Iyb3vrW1eXf6r-FX9eKW5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563412597</pqid></control><display><type>article</type><title>Transpiration through hydrogels</title><source>Cambridge University Press</source><creator>Etzold, Merlin A. ; Linden, P.F. ; Worster, M. Grae</creator><creatorcontrib>Etzold, Merlin A. ; Linden, P.F. ; Worster, M. Grae</creatorcontrib><description>We present experiments and theory relating to transpiration through unrestrained hydrogel beads in contact with a water reservoir below and air above. Experimentally, we find that saturated hydrogel beads shrink until a steady state is reached in which water flows continuously through the beads. The size of the bead in steady state is sensitive to the evaporation rate, which depends on the relative humidity and speed of the surrounding air, and to the pressure head imposed by the fluid reservoir. Specifically, the bead size decreases with increasing pressure head or evaporation rate. Our one-dimensional model proposes that transport in the hydrogel is driven by gradients in osmotic pressure, caused by gradients in polymer concentration in the hydrogel that correspond to gradients in swelling. If the evaporation rate or the pressure head changes, the adjustment of this gradient requires the bead to change shape and size. Smaller beads have larger gradients of osmotic pressure, which drive higher transpiration rates and can draw water against larger pressure heads.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.608</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Atmospheric pressure ; Beads ; Concentration gradient ; Evaporation ; Evaporation rate ; Experiments ; Fluid mechanics ; Gradients ; Humidity ; Hydrogels ; JFM Papers ; Oil recovery ; One dimensional models ; Osmosis ; Osmotic pressure ; Polymers ; Pressure head ; Relative humidity ; Reservoirs ; Steady state ; Transpiration ; Water flow ; Water reservoirs</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.925, Article A8</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83</citedby><cites>FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83</cites><orcidid>0000-0002-4914-4908 ; 0000-0002-8511-2241 ; 0000-0002-9248-2144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202100608X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27957,27958,73317</link.rule.ids></links><search><creatorcontrib>Etzold, Merlin A.</creatorcontrib><creatorcontrib>Linden, P.F.</creatorcontrib><creatorcontrib>Worster, M. Grae</creatorcontrib><title>Transpiration through hydrogels</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present experiments and theory relating to transpiration through unrestrained hydrogel beads in contact with a water reservoir below and air above. Experimentally, we find that saturated hydrogel beads shrink until a steady state is reached in which water flows continuously through the beads. The size of the bead in steady state is sensitive to the evaporation rate, which depends on the relative humidity and speed of the surrounding air, and to the pressure head imposed by the fluid reservoir. Specifically, the bead size decreases with increasing pressure head or evaporation rate. Our one-dimensional model proposes that transport in the hydrogel is driven by gradients in osmotic pressure, caused by gradients in polymer concentration in the hydrogel that correspond to gradients in swelling. If the evaporation rate or the pressure head changes, the adjustment of this gradient requires the bead to change shape and size. Smaller beads have larger gradients of osmotic pressure, which drive higher transpiration rates and can draw water against larger pressure heads.</description><subject>Atmospheric pressure</subject><subject>Beads</subject><subject>Concentration gradient</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Experiments</subject><subject>Fluid mechanics</subject><subject>Gradients</subject><subject>Humidity</subject><subject>Hydrogels</subject><subject>JFM Papers</subject><subject>Oil recovery</subject><subject>One dimensional models</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Polymers</subject><subject>Pressure head</subject><subject>Relative humidity</subject><subject>Reservoirs</subject><subject>Steady state</subject><subject>Transpiration</subject><subject>Water flow</subject><subject>Water reservoirs</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkDtPwzAUhS0EEqGwsVOJlYR7bceOR1TxkiqxlNmy6zzVJMVOhv57XLUSC9NZvnOO9BFyj5AhoHzuqj6jQDETUFyQBLlQqRQ8vyQJAKUpIoVrchNCB4AMlEzIw8abIexbb6Z2HJZT48e5bpbNwfmxLnfhllxVZhfKu3MuyPfb62b1ka6_3j9XL-t0yzhMKXcUUEhuWS6UMZQ7VyjuGEppOaNGWJkLJhkwwxUqkXNalNZaJ7i1whZsQR5Pu3s__sxlmHQ3zn6Il5rGJkeaKxmppxO19WMIvqz03re98QeNoI8KdFSgjwp0VBDx7Iyb3vrW1eXf6r-FX9eKW5o</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Etzold, Merlin A.</creator><creator>Linden, P.F.</creator><creator>Worster, M. Grae</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4914-4908</orcidid><orcidid>https://orcid.org/0000-0002-8511-2241</orcidid><orcidid>https://orcid.org/0000-0002-9248-2144</orcidid></search><sort><creationdate>20211025</creationdate><title>Transpiration through hydrogels</title><author>Etzold, Merlin A. ; Linden, P.F. ; Worster, M. Grae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric pressure</topic><topic>Beads</topic><topic>Concentration gradient</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Experiments</topic><topic>Fluid mechanics</topic><topic>Gradients</topic><topic>Humidity</topic><topic>Hydrogels</topic><topic>JFM Papers</topic><topic>Oil recovery</topic><topic>One dimensional models</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Polymers</topic><topic>Pressure head</topic><topic>Relative humidity</topic><topic>Reservoirs</topic><topic>Steady state</topic><topic>Transpiration</topic><topic>Water flow</topic><topic>Water reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etzold, Merlin A.</creatorcontrib><creatorcontrib>Linden, P.F.</creatorcontrib><creatorcontrib>Worster, M. Grae</creatorcontrib><collection>Cambridge University Press:Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etzold, Merlin A.</au><au>Linden, P.F.</au><au>Worster, M. Grae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transpiration through hydrogels</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>925</volume><artnum>A8</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We present experiments and theory relating to transpiration through unrestrained hydrogel beads in contact with a water reservoir below and air above. Experimentally, we find that saturated hydrogel beads shrink until a steady state is reached in which water flows continuously through the beads. The size of the bead in steady state is sensitive to the evaporation rate, which depends on the relative humidity and speed of the surrounding air, and to the pressure head imposed by the fluid reservoir. Specifically, the bead size decreases with increasing pressure head or evaporation rate. Our one-dimensional model proposes that transport in the hydrogel is driven by gradients in osmotic pressure, caused by gradients in polymer concentration in the hydrogel that correspond to gradients in swelling. If the evaporation rate or the pressure head changes, the adjustment of this gradient requires the bead to change shape and size. Smaller beads have larger gradients of osmotic pressure, which drive higher transpiration rates and can draw water against larger pressure heads.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.608</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-4914-4908</orcidid><orcidid>https://orcid.org/0000-0002-8511-2241</orcidid><orcidid>https://orcid.org/0000-0002-9248-2144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-10, Vol.925, Article A8
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2563412597
source Cambridge University Press
subjects Atmospheric pressure
Beads
Concentration gradient
Evaporation
Evaporation rate
Experiments
Fluid mechanics
Gradients
Humidity
Hydrogels
JFM Papers
Oil recovery
One dimensional models
Osmosis
Osmotic pressure
Polymers
Pressure head
Relative humidity
Reservoirs
Steady state
Transpiration
Water flow
Water reservoirs
title Transpiration through hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T00%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transpiration%20through%20hydrogels&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Etzold,%20Merlin%20A.&rft.date=2021-10-25&rft.volume=925&rft.artnum=A8&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.608&rft_dat=%3Cproquest_cross%3E2563412597%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-4d201674b3569aa24dd894d3177b432a6b75637303a491965428ebbbd64bb6b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563412597&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_608&rfr_iscdi=true