Loading…

Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere

•NO reduction characteristics on char surface in H2O differ from those in Ar.•Evolution pathways of NO reduction and CO release on char surface are studied by DFT.•The catalysis of Na intensifies the competition between the formation of CO and CO2.•Promotion ways of H2O atmosphere for NO reduction a...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2021-10, Vol.302, p.121105, Article 121105
Main Authors: Chen, Yi-Feng, Su, Sheng, Zhang, Chun-Xiu, Wang, Zhong-Hui, Xie, Yu-Xian, Zhang, Hao, Qing, Meng-Xia, Wang, Yi, Hu, Song, Zhang, Zhong-Xiao, Xiang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3
cites cdi_FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3
container_end_page
container_issue
container_start_page 121105
container_title Fuel (Guildford)
container_volume 302
creator Chen, Yi-Feng
Su, Sheng
Zhang, Chun-Xiu
Wang, Zhong-Hui
Xie, Yu-Xian
Zhang, Hao
Qing, Meng-Xia
Wang, Yi
Hu, Song
Zhang, Zhong-Xiao
Xiang, Jun
description •NO reduction characteristics on char surface in H2O differ from those in Ar.•Evolution pathways of NO reduction and CO release on char surface are studied by DFT.•The catalysis of Na intensifies the competition between the formation of CO and CO2.•Promotion ways of H2O atmosphere for NO reduction are elucidated at the molecular level.•The formation of H-C-O-Na groups is an important part of Na catalysis mechanism. The catalytic mechanism of Na during NO reduction on char surface is proposed to provide fundamental information for minimizing NOx emissions. A molecular modeling study was carried out using density functional theory to clarify the NO reduction and CO release pathways on char surface. The calculation results explain the promotion phenomenon caused by Na catalysis, and the fluctuation of the CO release curve in the experiment. Under H2O/Ar atmosphere, besides the NO-char heterogeneous reaction, simultaneous occurrence of the NO homogeneous reaction with lower energy barrier improved the NO reduction rate. According to the simulation results, the catalytic effect of Na is manifested in that it can weaken the conjugated components of the aromatics structure, and form a stable H-C-O-Na structure to weaken the connected C–C bond, thereby facilitating the CO release. Mayer bond order and RDG analyses indicate that the participation of Na can prevent the C-O bond from being stretched, and generate the strong attractive interaction to promote the NO reduction.
doi_str_mv 10.1016/j.fuel.2021.121105
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561104466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121009844</els_id><sourcerecordid>2561104466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA827zsZ_gpVRrhWIv9RzSZGKzbDdrsiv6701Zz8LAHOZ9ZoYHoXtKUkposWhSM0KbMsJoShmlJL9AM1qVPClpzi_RjMRUwnhBr9FNCA0hpKzybIY-nr978PYE3SBbLDuNn9Z77CGA9OqIXYe9awE7g4PTdjxh2-G3XQzoUQ02jmOpo_Q4jN5IBXjsNHi8YbvF0mM5nFzoj-DhFl0Z2Qa4--tz9L5-3q82yXb38rpabhPFWTUkih10CdoQrcpKF6zWhaH8QGgOVZYBz43isqilLKXKKn0wpWERrOuSGk5A8Tl6mPb23n2OEAbRuNF38aRgeRHFZFlRxBSbUsq7EDwY0UcH0v8ISsRZqGjEWag4CxWT0Ag9ThDE_78seBGUhU6Bth7UILSz_-G_YZB-gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561104466</pqid></control><display><type>article</type><title>Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Yi-Feng ; Su, Sheng ; Zhang, Chun-Xiu ; Wang, Zhong-Hui ; Xie, Yu-Xian ; Zhang, Hao ; Qing, Meng-Xia ; Wang, Yi ; Hu, Song ; Zhang, Zhong-Xiao ; Xiang, Jun</creator><creatorcontrib>Chen, Yi-Feng ; Su, Sheng ; Zhang, Chun-Xiu ; Wang, Zhong-Hui ; Xie, Yu-Xian ; Zhang, Hao ; Qing, Meng-Xia ; Wang, Yi ; Hu, Song ; Zhang, Zhong-Xiao ; Xiang, Jun</creatorcontrib><description>•NO reduction characteristics on char surface in H2O differ from those in Ar.•Evolution pathways of NO reduction and CO release on char surface are studied by DFT.•The catalysis of Na intensifies the competition between the formation of CO and CO2.•Promotion ways of H2O atmosphere for NO reduction are elucidated at the molecular level.•The formation of H-C-O-Na groups is an important part of Na catalysis mechanism. The catalytic mechanism of Na during NO reduction on char surface is proposed to provide fundamental information for minimizing NOx emissions. A molecular modeling study was carried out using density functional theory to clarify the NO reduction and CO release pathways on char surface. The calculation results explain the promotion phenomenon caused by Na catalysis, and the fluctuation of the CO release curve in the experiment. Under H2O/Ar atmosphere, besides the NO-char heterogeneous reaction, simultaneous occurrence of the NO homogeneous reaction with lower energy barrier improved the NO reduction rate. According to the simulation results, the catalytic effect of Na is manifested in that it can weaken the conjugated components of the aromatics structure, and form a stable H-C-O-Na structure to weaken the connected C–C bond, thereby facilitating the CO release. Mayer bond order and RDG analyses indicate that the participation of Na can prevent the C-O bond from being stretched, and generate the strong attractive interaction to promote the NO reduction.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121105</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aromatic compounds ; Atmosphere ; Atmospheric models ; Carbon monoxide ; Catalysis ; Char ; CO release ; Covalent bonds ; Density functional theory ; Molecular modelling ; NO reduction ; Reduction ; Sodium</subject><ispartof>Fuel (Guildford), 2021-10, Vol.302, p.121105, Article 121105</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3</citedby><cites>FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Chen, Yi-Feng</creatorcontrib><creatorcontrib>Su, Sheng</creatorcontrib><creatorcontrib>Zhang, Chun-Xiu</creatorcontrib><creatorcontrib>Wang, Zhong-Hui</creatorcontrib><creatorcontrib>Xie, Yu-Xian</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Qing, Meng-Xia</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Zhang, Zhong-Xiao</creatorcontrib><creatorcontrib>Xiang, Jun</creatorcontrib><title>Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere</title><title>Fuel (Guildford)</title><description>•NO reduction characteristics on char surface in H2O differ from those in Ar.•Evolution pathways of NO reduction and CO release on char surface are studied by DFT.•The catalysis of Na intensifies the competition between the formation of CO and CO2.•Promotion ways of H2O atmosphere for NO reduction are elucidated at the molecular level.•The formation of H-C-O-Na groups is an important part of Na catalysis mechanism. The catalytic mechanism of Na during NO reduction on char surface is proposed to provide fundamental information for minimizing NOx emissions. A molecular modeling study was carried out using density functional theory to clarify the NO reduction and CO release pathways on char surface. The calculation results explain the promotion phenomenon caused by Na catalysis, and the fluctuation of the CO release curve in the experiment. Under H2O/Ar atmosphere, besides the NO-char heterogeneous reaction, simultaneous occurrence of the NO homogeneous reaction with lower energy barrier improved the NO reduction rate. According to the simulation results, the catalytic effect of Na is manifested in that it can weaken the conjugated components of the aromatics structure, and form a stable H-C-O-Na structure to weaken the connected C–C bond, thereby facilitating the CO release. Mayer bond order and RDG analyses indicate that the participation of Na can prevent the C-O bond from being stretched, and generate the strong attractive interaction to promote the NO reduction.</description><subject>Aromatic compounds</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Char</subject><subject>CO release</subject><subject>Covalent bonds</subject><subject>Density functional theory</subject><subject>Molecular modelling</subject><subject>NO reduction</subject><subject>Reduction</subject><subject>Sodium</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA827zsZ_gpVRrhWIv9RzSZGKzbDdrsiv6701Zz8LAHOZ9ZoYHoXtKUkposWhSM0KbMsJoShmlJL9AM1qVPClpzi_RjMRUwnhBr9FNCA0hpKzybIY-nr978PYE3SBbLDuNn9Z77CGA9OqIXYe9awE7g4PTdjxh2-G3XQzoUQ02jmOpo_Q4jN5IBXjsNHi8YbvF0mM5nFzoj-DhFl0Z2Qa4--tz9L5-3q82yXb38rpabhPFWTUkih10CdoQrcpKF6zWhaH8QGgOVZYBz43isqilLKXKKn0wpWERrOuSGk5A8Tl6mPb23n2OEAbRuNF38aRgeRHFZFlRxBSbUsq7EDwY0UcH0v8ISsRZqGjEWag4CxWT0Ag9ThDE_78seBGUhU6Bth7UILSz_-G_YZB-gQ</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Chen, Yi-Feng</creator><creator>Su, Sheng</creator><creator>Zhang, Chun-Xiu</creator><creator>Wang, Zhong-Hui</creator><creator>Xie, Yu-Xian</creator><creator>Zhang, Hao</creator><creator>Qing, Meng-Xia</creator><creator>Wang, Yi</creator><creator>Hu, Song</creator><creator>Zhang, Zhong-Xiao</creator><creator>Xiang, Jun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211015</creationdate><title>Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere</title><author>Chen, Yi-Feng ; Su, Sheng ; Zhang, Chun-Xiu ; Wang, Zhong-Hui ; Xie, Yu-Xian ; Zhang, Hao ; Qing, Meng-Xia ; Wang, Yi ; Hu, Song ; Zhang, Zhong-Xiao ; Xiang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aromatic compounds</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Char</topic><topic>CO release</topic><topic>Covalent bonds</topic><topic>Density functional theory</topic><topic>Molecular modelling</topic><topic>NO reduction</topic><topic>Reduction</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yi-Feng</creatorcontrib><creatorcontrib>Su, Sheng</creatorcontrib><creatorcontrib>Zhang, Chun-Xiu</creatorcontrib><creatorcontrib>Wang, Zhong-Hui</creatorcontrib><creatorcontrib>Xie, Yu-Xian</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Qing, Meng-Xia</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><creatorcontrib>Zhang, Zhong-Xiao</creatorcontrib><creatorcontrib>Xiang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yi-Feng</au><au>Su, Sheng</au><au>Zhang, Chun-Xiu</au><au>Wang, Zhong-Hui</au><au>Xie, Yu-Xian</au><au>Zhang, Hao</au><au>Qing, Meng-Xia</au><au>Wang, Yi</au><au>Hu, Song</au><au>Zhang, Zhong-Xiao</au><au>Xiang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>302</volume><spage>121105</spage><pages>121105-</pages><artnum>121105</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•NO reduction characteristics on char surface in H2O differ from those in Ar.•Evolution pathways of NO reduction and CO release on char surface are studied by DFT.•The catalysis of Na intensifies the competition between the formation of CO and CO2.•Promotion ways of H2O atmosphere for NO reduction are elucidated at the molecular level.•The formation of H-C-O-Na groups is an important part of Na catalysis mechanism. The catalytic mechanism of Na during NO reduction on char surface is proposed to provide fundamental information for minimizing NOx emissions. A molecular modeling study was carried out using density functional theory to clarify the NO reduction and CO release pathways on char surface. The calculation results explain the promotion phenomenon caused by Na catalysis, and the fluctuation of the CO release curve in the experiment. Under H2O/Ar atmosphere, besides the NO-char heterogeneous reaction, simultaneous occurrence of the NO homogeneous reaction with lower energy barrier improved the NO reduction rate. According to the simulation results, the catalytic effect of Na is manifested in that it can weaken the conjugated components of the aromatics structure, and form a stable H-C-O-Na structure to weaken the connected C–C bond, thereby facilitating the CO release. Mayer bond order and RDG analyses indicate that the participation of Na can prevent the C-O bond from being stretched, and generate the strong attractive interaction to promote the NO reduction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121105</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-10, Vol.302, p.121105, Article 121105
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2561104466
source ScienceDirect Freedom Collection 2022-2024
subjects Aromatic compounds
Atmosphere
Atmospheric models
Carbon monoxide
Catalysis
Char
CO release
Covalent bonds
Density functional theory
Molecular modelling
NO reduction
Reduction
Sodium
title Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20DFT%20research%20on%20role%20of%20sodium%20in%20NO%20reduction%20on%20char%20surface%20under%20H2O/Ar%20atmosphere&rft.jtitle=Fuel%20(Guildford)&rft.au=Chen,%20Yi-Feng&rft.date=2021-10-15&rft.volume=302&rft.spage=121105&rft.pages=121105-&rft.artnum=121105&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121105&rft_dat=%3Cproquest_cross%3E2561104466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-c2bd7edf0dc78d629d6f13b015e844e35fc3a69aa7ac48dbf7f23289971f30ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561104466&rft_id=info:pmid/&rfr_iscdi=true