Loading…

Long-Range Miniaturized Ceramic RFID Tags

Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2021-06, Vol.69 (6), p.3125-3131
Main Authors: Dobrykh, Dmitry, Yusupov, Ildar, Krasikov, Sergey, Mikhailovskaya, Anna, Shakirova, Diana, Bogdanov, Andrey A., Slobozhanyuk, Alexey, Filonov, Dmitry, Ginzburg, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3
cites cdi_FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3
container_end_page 3131
container_issue 6
container_start_page 3125
container_title IEEE transactions on antennas and propagation
container_volume 69
creator Dobrykh, Dmitry
Yusupov, Ildar
Krasikov, Sergey
Mikhailovskaya, Anna
Shakirova, Diana
Bogdanov, Andrey A.
Slobozhanyuk, Alexey
Filonov, Dmitry
Ginzburg, Pavel
description Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna devices that support this technology. In particular, readout range extension and miniaturization of passive RFID tags is an important challenge with far-reaching goals. Here, we introduce and analyze a new concept of high-permittivity ceramic tag that relies on different physical principles. Instead of using conduction currents in metallic wires to drive electronic chips and generate electromagnetic radiation, high-permittivity components rely on excitation of displacement currents. Those are efficiently converted to actual electric current which drives the memory chip. Practical aspects of this approach are improved robustness to environmental fluctuations, footprint reduction, and readout range extension. In particular, our high-permittivity ceramic ( \varepsilon ~ \sim ~100 ) elements have demonstrated a 25% reading range improvement in comparison to commercial tags. In case when state-of-the-art readers and RFID chips are used, the readout distances of the developed ceramic tags can reach 22 m. This number can be further extended with improved matching circuits. Miniature RFID tags, capable to establish long-range communication channels, can find use in many applications, including retail, security, Internet of Things, and many others.
doi_str_mv 10.1109/TAP.2020.3037663
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2536035825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9263310</ieee_id><sourcerecordid>2536035825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKt3wUvBk4fON3mbNj2O6nRQUUYP3kLavikdrp1Jd9C_3o4NTw8PPB_wY-yWw5xzyB7LxcdcgIA5AqZJgmdsxqVUkRCCn7MZAFdRJpLPS3bl_WaysYrjGXsohr6N1qZvKXzr-s6Me9f9UhPm5My2q8P1cvUUlqb11-zCmi9PNycNWLl8LvPXqHh_WeWLIqoRcYxshWnGMclIxrISwqK1cUPckKxr1aDBShnZiNhCWpGoshSUsQCpTBtragzY_XF254bvPflRb4a966dHLSQmgFJNGjA4pmo3eO_I6p3rtsb9aA76wENPPPSBhz7xmCp3x0pHRP_xCQkiB_wDpdNZ4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536035825</pqid></control><display><type>article</type><title>Long-Range Miniaturized Ceramic RFID Tags</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dobrykh, Dmitry ; Yusupov, Ildar ; Krasikov, Sergey ; Mikhailovskaya, Anna ; Shakirova, Diana ; Bogdanov, Andrey A. ; Slobozhanyuk, Alexey ; Filonov, Dmitry ; Ginzburg, Pavel</creator><creatorcontrib>Dobrykh, Dmitry ; Yusupov, Ildar ; Krasikov, Sergey ; Mikhailovskaya, Anna ; Shakirova, Diana ; Bogdanov, Andrey A. ; Slobozhanyuk, Alexey ; Filonov, Dmitry ; Ginzburg, Pavel</creatorcontrib><description>Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna devices that support this technology. In particular, readout range extension and miniaturization of passive RFID tags is an important challenge with far-reaching goals. Here, we introduce and analyze a new concept of high-permittivity ceramic tag that relies on different physical principles. Instead of using conduction currents in metallic wires to drive electronic chips and generate electromagnetic radiation, high-permittivity components rely on excitation of displacement currents. Those are efficiently converted to actual electric current which drives the memory chip. Practical aspects of this approach are improved robustness to environmental fluctuations, footprint reduction, and readout range extension. In particular, our high-permittivity ceramic (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\varepsilon ~ \sim ~100 &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements have demonstrated a 25% reading range improvement in comparison to commercial tags. In case when state-of-the-art readers and RFID chips are used, the readout distances of the developed ceramic tags can reach 22 m. This number can be further extended with improved matching circuits. Miniature RFID tags, capable to establish long-range communication channels, can find use in many applications, including retail, security, Internet of Things, and many others.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2020.3037663</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Bandwidth ; Ceramic resonators ; Ceramics ; Chips (memory devices) ; Communication ; dielectric resonant antennas (DRAs) ; Dielectrics ; Electromagnetic radiation ; Internet of Things ; Metals ; Miniaturization ; Permittivity ; Radio frequency identification ; radio frequency identification (RFID) ; Resonators ; RFID tags ; Tags ; Wireless communications</subject><ispartof>IEEE transactions on antennas and propagation, 2021-06, Vol.69 (6), p.3125-3131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3</citedby><cites>FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3</cites><orcidid>0000-0002-5394-8677 ; 0000-0002-8215-0445 ; 0000-0003-3773-2988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9263310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,55147</link.rule.ids></links><search><creatorcontrib>Dobrykh, Dmitry</creatorcontrib><creatorcontrib>Yusupov, Ildar</creatorcontrib><creatorcontrib>Krasikov, Sergey</creatorcontrib><creatorcontrib>Mikhailovskaya, Anna</creatorcontrib><creatorcontrib>Shakirova, Diana</creatorcontrib><creatorcontrib>Bogdanov, Andrey A.</creatorcontrib><creatorcontrib>Slobozhanyuk, Alexey</creatorcontrib><creatorcontrib>Filonov, Dmitry</creatorcontrib><creatorcontrib>Ginzburg, Pavel</creatorcontrib><title>Long-Range Miniaturized Ceramic RFID Tags</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna devices that support this technology. In particular, readout range extension and miniaturization of passive RFID tags is an important challenge with far-reaching goals. Here, we introduce and analyze a new concept of high-permittivity ceramic tag that relies on different physical principles. Instead of using conduction currents in metallic wires to drive electronic chips and generate electromagnetic radiation, high-permittivity components rely on excitation of displacement currents. Those are efficiently converted to actual electric current which drives the memory chip. Practical aspects of this approach are improved robustness to environmental fluctuations, footprint reduction, and readout range extension. In particular, our high-permittivity ceramic (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\varepsilon ~ \sim ~100 &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements have demonstrated a 25% reading range improvement in comparison to commercial tags. In case when state-of-the-art readers and RFID chips are used, the readout distances of the developed ceramic tags can reach 22 m. This number can be further extended with improved matching circuits. Miniature RFID tags, capable to establish long-range communication channels, can find use in many applications, including retail, security, Internet of Things, and many others.</description><subject>Antennas</subject><subject>Bandwidth</subject><subject>Ceramic resonators</subject><subject>Ceramics</subject><subject>Chips (memory devices)</subject><subject>Communication</subject><subject>dielectric resonant antennas (DRAs)</subject><subject>Dielectrics</subject><subject>Electromagnetic radiation</subject><subject>Internet of Things</subject><subject>Metals</subject><subject>Miniaturization</subject><subject>Permittivity</subject><subject>Radio frequency identification</subject><subject>radio frequency identification (RFID)</subject><subject>Resonators</subject><subject>RFID tags</subject><subject>Tags</subject><subject>Wireless communications</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOKt3wUvBk4fON3mbNj2O6nRQUUYP3kLavikdrp1Jd9C_3o4NTw8PPB_wY-yWw5xzyB7LxcdcgIA5AqZJgmdsxqVUkRCCn7MZAFdRJpLPS3bl_WaysYrjGXsohr6N1qZvKXzr-s6Me9f9UhPm5My2q8P1cvUUlqb11-zCmi9PNycNWLl8LvPXqHh_WeWLIqoRcYxshWnGMclIxrISwqK1cUPckKxr1aDBShnZiNhCWpGoshSUsQCpTBtragzY_XF254bvPflRb4a966dHLSQmgFJNGjA4pmo3eO_I6p3rtsb9aA76wENPPPSBhz7xmCp3x0pHRP_xCQkiB_wDpdNZ4w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dobrykh, Dmitry</creator><creator>Yusupov, Ildar</creator><creator>Krasikov, Sergey</creator><creator>Mikhailovskaya, Anna</creator><creator>Shakirova, Diana</creator><creator>Bogdanov, Andrey A.</creator><creator>Slobozhanyuk, Alexey</creator><creator>Filonov, Dmitry</creator><creator>Ginzburg, Pavel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5394-8677</orcidid><orcidid>https://orcid.org/0000-0002-8215-0445</orcidid><orcidid>https://orcid.org/0000-0003-3773-2988</orcidid></search><sort><creationdate>20210601</creationdate><title>Long-Range Miniaturized Ceramic RFID Tags</title><author>Dobrykh, Dmitry ; Yusupov, Ildar ; Krasikov, Sergey ; Mikhailovskaya, Anna ; Shakirova, Diana ; Bogdanov, Andrey A. ; Slobozhanyuk, Alexey ; Filonov, Dmitry ; Ginzburg, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antennas</topic><topic>Bandwidth</topic><topic>Ceramic resonators</topic><topic>Ceramics</topic><topic>Chips (memory devices)</topic><topic>Communication</topic><topic>dielectric resonant antennas (DRAs)</topic><topic>Dielectrics</topic><topic>Electromagnetic radiation</topic><topic>Internet of Things</topic><topic>Metals</topic><topic>Miniaturization</topic><topic>Permittivity</topic><topic>Radio frequency identification</topic><topic>radio frequency identification (RFID)</topic><topic>Resonators</topic><topic>RFID tags</topic><topic>Tags</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrykh, Dmitry</creatorcontrib><creatorcontrib>Yusupov, Ildar</creatorcontrib><creatorcontrib>Krasikov, Sergey</creatorcontrib><creatorcontrib>Mikhailovskaya, Anna</creatorcontrib><creatorcontrib>Shakirova, Diana</creatorcontrib><creatorcontrib>Bogdanov, Andrey A.</creatorcontrib><creatorcontrib>Slobozhanyuk, Alexey</creatorcontrib><creatorcontrib>Filonov, Dmitry</creatorcontrib><creatorcontrib>Ginzburg, Pavel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrykh, Dmitry</au><au>Yusupov, Ildar</au><au>Krasikov, Sergey</au><au>Mikhailovskaya, Anna</au><au>Shakirova, Diana</au><au>Bogdanov, Andrey A.</au><au>Slobozhanyuk, Alexey</au><au>Filonov, Dmitry</au><au>Ginzburg, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Range Miniaturized Ceramic RFID Tags</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>69</volume><issue>6</issue><spage>3125</spage><epage>3131</epage><pages>3125-3131</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna devices that support this technology. In particular, readout range extension and miniaturization of passive RFID tags is an important challenge with far-reaching goals. Here, we introduce and analyze a new concept of high-permittivity ceramic tag that relies on different physical principles. Instead of using conduction currents in metallic wires to drive electronic chips and generate electromagnetic radiation, high-permittivity components rely on excitation of displacement currents. Those are efficiently converted to actual electric current which drives the memory chip. Practical aspects of this approach are improved robustness to environmental fluctuations, footprint reduction, and readout range extension. In particular, our high-permittivity ceramic (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\varepsilon ~ \sim ~100 &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements have demonstrated a 25% reading range improvement in comparison to commercial tags. In case when state-of-the-art readers and RFID chips are used, the readout distances of the developed ceramic tags can reach 22 m. This number can be further extended with improved matching circuits. Miniature RFID tags, capable to establish long-range communication channels, can find use in many applications, including retail, security, Internet of Things, and many others.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2020.3037663</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5394-8677</orcidid><orcidid>https://orcid.org/0000-0002-8215-0445</orcidid><orcidid>https://orcid.org/0000-0003-3773-2988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2021-06, Vol.69 (6), p.3125-3131
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2536035825
source IEEE Electronic Library (IEL) Journals
subjects Antennas
Bandwidth
Ceramic resonators
Ceramics
Chips (memory devices)
Communication
dielectric resonant antennas (DRAs)
Dielectrics
Electromagnetic radiation
Internet of Things
Metals
Miniaturization
Permittivity
Radio frequency identification
radio frequency identification (RFID)
Resonators
RFID tags
Tags
Wireless communications
title Long-Range Miniaturized Ceramic RFID Tags
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T00%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Range%20Miniaturized%20Ceramic%20RFID%20Tags&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dobrykh,%20Dmitry&rft.date=2021-06-01&rft.volume=69&rft.issue=6&rft.spage=3125&rft.epage=3131&rft.pages=3125-3131&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2020.3037663&rft_dat=%3Cproquest_ieee_%3E2536035825%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-fb3791369e545b22f3ff4de1ae5cc8d3a3b8a5d24f07be2b9708af00757dfac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536035825&rft_id=info:pmid/&rft_ieee_id=9263310&rfr_iscdi=true