Loading…

Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor

A nanocomposite solid polymer electrolyte (SPE) system has been prepared for application in a supercapacitor. Corn starch is used to host the ionic conduction with lithium acetate (LiOAc) salt as an ion provider. Different concentrations of nanosized titanium dioxide (TiO 2 ) filler have been added...

Full description

Saved in:
Bibliographic Details
Published in:Ionics 2021-02, Vol.27 (2), p.853-865
Main Authors: Ong, A. C. W., Shamsuri, N. A., Zaine, S. N. A., Panuh, Dedikarni, Shukur, M. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03
cites cdi_FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03
container_end_page 865
container_issue 2
container_start_page 853
container_title Ionics
container_volume 27
creator Ong, A. C. W.
Shamsuri, N. A.
Zaine, S. N. A.
Panuh, Dedikarni
Shukur, M. F.
description A nanocomposite solid polymer electrolyte (SPE) system has been prepared for application in a supercapacitor. Corn starch is used to host the ionic conduction with lithium acetate (LiOAc) salt as an ion provider. Different concentrations of nanosized titanium dioxide (TiO 2 ) filler have been added to analyse the influence of nanofiller addition on the conductivity and other properties of the electrolytes. Structural characterisation and complex formation have been examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. It is shown that the room temperature conductivity changes with the change in TiO 2 concentration. Adding 4 wt.% TiO 2 to the starch-LiOAc complex leads to an optimum conductivity of (8.37 ± 1.04) × 10 −4  S cm −1 . The variation in conductivity is accompanied by the change in surface morphology as observed from field emission scanning electron microscopy (FESEM) analysis. Linear sweep voltammetry (LSV) indicates that the electrochemical potential stability window of the electrolyte with 4 wt.% TiO 2 lies in the range between − 2.0 and + 1.9 V. A supercapacitor has been assembled using the electrolyte, and its performance has been characterised using impedance technique and cyclic voltammetry.
doi_str_mv 10.1007/s11581-020-03856-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480083927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480083927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTbs2knsHlHFn1TBBc7W1nFaV2kcbPfQtydtkbhxWq1mvlntMHaLcI8A6iEhVho5COAgdVVzecYmqGvBQdVwziYwKxVXUKpLdpXSBqCuUagJS-_UBxu2Q0g-u2II3X7rYuE6Z3Mcl-xScZCjT75fFSlTtGve-bz2u21B1mUaMeqbIvtMvaeiDbGgruMpdL7h6ain3eCipYGszyFes4uWuuRufueUfT0_fc5f-eLj5W3-uOBW1jJzUnqJqKlGcFLbUqAUjZipRruqlUgCa72cLQkr0FaUAIDYVCSqsqratgE5ZXen3CGG751L2WzCLvbjSSNKDaDlTKjRJU4uG0NK0bVmfHZLcW8QzKFccyrXjOWaY7lGjpA8QWk09ysX_6L_oX4A4Vd-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480083927</pqid></control><display><type>article</type><title>Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ong, A. C. W. ; Shamsuri, N. A. ; Zaine, S. N. A. ; Panuh, Dedikarni ; Shukur, M. F.</creator><creatorcontrib>Ong, A. C. W. ; Shamsuri, N. A. ; Zaine, S. N. A. ; Panuh, Dedikarni ; Shukur, M. F.</creatorcontrib><description>A nanocomposite solid polymer electrolyte (SPE) system has been prepared for application in a supercapacitor. Corn starch is used to host the ionic conduction with lithium acetate (LiOAc) salt as an ion provider. Different concentrations of nanosized titanium dioxide (TiO 2 ) filler have been added to analyse the influence of nanofiller addition on the conductivity and other properties of the electrolytes. Structural characterisation and complex formation have been examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. It is shown that the room temperature conductivity changes with the change in TiO 2 concentration. Adding 4 wt.% TiO 2 to the starch-LiOAc complex leads to an optimum conductivity of (8.37 ± 1.04) × 10 −4  S cm −1 . The variation in conductivity is accompanied by the change in surface morphology as observed from field emission scanning electron microscopy (FESEM) analysis. Linear sweep voltammetry (LSV) indicates that the electrochemical potential stability window of the electrolyte with 4 wt.% TiO 2 lies in the range between − 2.0 and + 1.9 V. A supercapacitor has been assembled using the electrolyte, and its performance has been characterised using impedance technique and cyclic voltammetry.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03856-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry ; Chemistry and Materials Science ; Complex formation ; Condensed Matter Physics ; Electrochemical potential ; Electrochemistry ; Electrolytes ; Emission analysis ; Energy Storage ; Field emission microscopy ; Fourier transforms ; Lithium ; Morphology ; Nanocomposites ; Optical and Electronic Materials ; Original Paper ; Renewable and Green Energy ; Room temperature ; Stability analysis ; Supercapacitors ; Thermal conductivity ; Titanium dioxide ; Voltammetry</subject><ispartof>Ionics, 2021-02, Vol.27 (2), p.853-865</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03</citedby><cites>FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Ong, A. C. W.</creatorcontrib><creatorcontrib>Shamsuri, N. A.</creatorcontrib><creatorcontrib>Zaine, S. N. A.</creatorcontrib><creatorcontrib>Panuh, Dedikarni</creatorcontrib><creatorcontrib>Shukur, M. F.</creatorcontrib><title>Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor</title><title>Ionics</title><addtitle>Ionics</addtitle><description>A nanocomposite solid polymer electrolyte (SPE) system has been prepared for application in a supercapacitor. Corn starch is used to host the ionic conduction with lithium acetate (LiOAc) salt as an ion provider. Different concentrations of nanosized titanium dioxide (TiO 2 ) filler have been added to analyse the influence of nanofiller addition on the conductivity and other properties of the electrolytes. Structural characterisation and complex formation have been examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. It is shown that the room temperature conductivity changes with the change in TiO 2 concentration. Adding 4 wt.% TiO 2 to the starch-LiOAc complex leads to an optimum conductivity of (8.37 ± 1.04) × 10 −4  S cm −1 . The variation in conductivity is accompanied by the change in surface morphology as observed from field emission scanning electron microscopy (FESEM) analysis. Linear sweep voltammetry (LSV) indicates that the electrochemical potential stability window of the electrolyte with 4 wt.% TiO 2 lies in the range between − 2.0 and + 1.9 V. A supercapacitor has been assembled using the electrolyte, and its performance has been characterised using impedance technique and cyclic voltammetry.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex formation</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Emission analysis</subject><subject>Energy Storage</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Lithium</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Room temperature</subject><subject>Stability analysis</subject><subject>Supercapacitors</subject><subject>Thermal conductivity</subject><subject>Titanium dioxide</subject><subject>Voltammetry</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTbs2knsHlHFn1TBBc7W1nFaV2kcbPfQtydtkbhxWq1mvlntMHaLcI8A6iEhVho5COAgdVVzecYmqGvBQdVwziYwKxVXUKpLdpXSBqCuUagJS-_UBxu2Q0g-u2II3X7rYuE6Z3Mcl-xScZCjT75fFSlTtGve-bz2u21B1mUaMeqbIvtMvaeiDbGgruMpdL7h6ain3eCipYGszyFes4uWuuRufueUfT0_fc5f-eLj5W3-uOBW1jJzUnqJqKlGcFLbUqAUjZipRruqlUgCa72cLQkr0FaUAIDYVCSqsqratgE5ZXen3CGG751L2WzCLvbjSSNKDaDlTKjRJU4uG0NK0bVmfHZLcW8QzKFccyrXjOWaY7lGjpA8QWk09ysX_6L_oX4A4Vd-ng</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ong, A. C. W.</creator><creator>Shamsuri, N. A.</creator><creator>Zaine, S. N. A.</creator><creator>Panuh, Dedikarni</creator><creator>Shukur, M. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor</title><author>Ong, A. C. W. ; Shamsuri, N. A. ; Zaine, S. N. A. ; Panuh, Dedikarni ; Shukur, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex formation</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Emission analysis</topic><topic>Energy Storage</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Lithium</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Room temperature</topic><topic>Stability analysis</topic><topic>Supercapacitors</topic><topic>Thermal conductivity</topic><topic>Titanium dioxide</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, A. C. W.</creatorcontrib><creatorcontrib>Shamsuri, N. A.</creatorcontrib><creatorcontrib>Zaine, S. N. A.</creatorcontrib><creatorcontrib>Panuh, Dedikarni</creatorcontrib><creatorcontrib>Shukur, M. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, A. C. W.</au><au>Shamsuri, N. A.</au><au>Zaine, S. N. A.</au><au>Panuh, Dedikarni</au><au>Shukur, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>853</spage><epage>865</epage><pages>853-865</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>A nanocomposite solid polymer electrolyte (SPE) system has been prepared for application in a supercapacitor. Corn starch is used to host the ionic conduction with lithium acetate (LiOAc) salt as an ion provider. Different concentrations of nanosized titanium dioxide (TiO 2 ) filler have been added to analyse the influence of nanofiller addition on the conductivity and other properties of the electrolytes. Structural characterisation and complex formation have been examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. It is shown that the room temperature conductivity changes with the change in TiO 2 concentration. Adding 4 wt.% TiO 2 to the starch-LiOAc complex leads to an optimum conductivity of (8.37 ± 1.04) × 10 −4  S cm −1 . The variation in conductivity is accompanied by the change in surface morphology as observed from field emission scanning electron microscopy (FESEM) analysis. Linear sweep voltammetry (LSV) indicates that the electrochemical potential stability window of the electrolyte with 4 wt.% TiO 2 lies in the range between − 2.0 and + 1.9 V. A supercapacitor has been assembled using the electrolyte, and its performance has been characterised using impedance technique and cyclic voltammetry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03856-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-02, Vol.27 (2), p.853-865
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2480083927
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Chemistry
Chemistry and Materials Science
Complex formation
Condensed Matter Physics
Electrochemical potential
Electrochemistry
Electrolytes
Emission analysis
Energy Storage
Field emission microscopy
Fourier transforms
Lithium
Morphology
Nanocomposites
Optical and Electronic Materials
Original Paper
Renewable and Green Energy
Room temperature
Stability analysis
Supercapacitors
Thermal conductivity
Titanium dioxide
Voltammetry
title Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T11%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposite%20polymer%20electrolytes%20comprising%20starch-lithium%20acetate%20and%20titania%20for%20all-solid-state%20supercapacitor&rft.jtitle=Ionics&rft.au=Ong,%20A.%20C.%20W.&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=853&rft.epage=865&rft.pages=853-865&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03856-3&rft_dat=%3Cproquest_cross%3E2480083927%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-a78b118a610e38c42132d297d8e5f31a2168b9ba1508c2400011d5a25455ffd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480083927&rft_id=info:pmid/&rfr_iscdi=true