Loading…

Molecular simulation of crystallization of polymers confined in cylindrical nanodomain

The crystallization behavior of polymers confined in nanocylinders has been investigated by dynamic Monte Carlo simulation. For confined polymer systems with different molecular weights, the evolution of crystallinity with Monte Carlo time shows first-order kinetics, which means that homogeneous nuc...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2020-10, Vol.206, p.122818, Article 122818
Main Authors: Ming, Yongqiang, Zhou, Zhiping, Zhang, Shuihua, Wei, Yangyang, Hao, Tongfan, Nie, Yijing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23
cites cdi_FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23
container_end_page
container_issue
container_start_page 122818
container_title Polymer (Guilford)
container_volume 206
creator Ming, Yongqiang
Zhou, Zhiping
Zhang, Shuihua
Wei, Yangyang
Hao, Tongfan
Nie, Yijing
description The crystallization behavior of polymers confined in nanocylinders has been investigated by dynamic Monte Carlo simulation. For confined polymer systems with different molecular weights, the evolution of crystallinity with Monte Carlo time shows first-order kinetics, which means that homogeneous nucleation controls the whole crystallization process. At this time, the nucleation mechanism changes from intermolecular nucleation to intramolecular nucleation with the increase of molecular weights. For confined polymer systems with different interface interactions, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation when the interface interaction changes from 0 to −1.5. For confined polymer systems with different lateral sizes, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation with the decrease of lateral sizes. During crystallization, crystal orientation and morphology are also closely related to molecular weights, interface interactions and lateral sizes. These simulation results may provide theoretical guidance for the design and preparation of high-performance confined polymer materials. [Display omitted] •Stronger space-confined effect leads to the nucleation-dominant crystallization.•The nucleation mechanism changed with the increase of molecular weights.•The nucleation mode changed with the decrease of lateral sizes.
doi_str_mv 10.1016/j.polymer.2020.122818
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451418208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120306467</els_id><sourcerecordid>2451418208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsF1x-Q2bTMrkcEXjLhRtyFJbyElTcakI9Svt0MHt64unHsenEPINaMrRll12612wY09xhVQmDAAwcQJWTBRFznAmp2SBaUF5IWo2Dm5SKmjlEIJfEE-X4NDs3cqZsn20x1s8FloMxPHNCjn7M8fdExJmQm-tR6bzPrMjM76JlqjXOaVD03olfWX5KxVLuHV8S7Jx-PD--Y53749vWzut7nhtBhyrkut25IpiqJRVJmmQsRWrxnWRqNCDZrXlQLgyCnnuhBGQVGv1zVVAqFYkpvZdxfD1x7TILuwj36KlMBLxpkAKiZWObNMDClFbOUu2l7FUTIqDxPKTh7LycOEcp5w0t3NOpwqfNvpm4xFb7CxEc0gm2D_cfgFymd_jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451418208</pqid></control><display><type>article</type><title>Molecular simulation of crystallization of polymers confined in cylindrical nanodomain</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ming, Yongqiang ; Zhou, Zhiping ; Zhang, Shuihua ; Wei, Yangyang ; Hao, Tongfan ; Nie, Yijing</creator><creatorcontrib>Ming, Yongqiang ; Zhou, Zhiping ; Zhang, Shuihua ; Wei, Yangyang ; Hao, Tongfan ; Nie, Yijing</creatorcontrib><description>The crystallization behavior of polymers confined in nanocylinders has been investigated by dynamic Monte Carlo simulation. For confined polymer systems with different molecular weights, the evolution of crystallinity with Monte Carlo time shows first-order kinetics, which means that homogeneous nucleation controls the whole crystallization process. At this time, the nucleation mechanism changes from intermolecular nucleation to intramolecular nucleation with the increase of molecular weights. For confined polymer systems with different interface interactions, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation when the interface interaction changes from 0 to −1.5. For confined polymer systems with different lateral sizes, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation with the decrease of lateral sizes. During crystallization, crystal orientation and morphology are also closely related to molecular weights, interface interactions and lateral sizes. These simulation results may provide theoretical guidance for the design and preparation of high-performance confined polymer materials. [Display omitted] •Stronger space-confined effect leads to the nucleation-dominant crystallization.•The nucleation mechanism changed with the increase of molecular weights.•The nucleation mode changed with the decrease of lateral sizes.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.122818</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Confined polymers ; Crystal structure ; Crystallization ; Molecular weight ; Monte Carlo simulation ; Morphology ; Nucleation ; Polymers ; Simulation</subject><ispartof>Polymer (Guilford), 2020-10, Vol.206, p.122818, Article 122818</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23</citedby><cites>FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Ming, Yongqiang</creatorcontrib><creatorcontrib>Zhou, Zhiping</creatorcontrib><creatorcontrib>Zhang, Shuihua</creatorcontrib><creatorcontrib>Wei, Yangyang</creatorcontrib><creatorcontrib>Hao, Tongfan</creatorcontrib><creatorcontrib>Nie, Yijing</creatorcontrib><title>Molecular simulation of crystallization of polymers confined in cylindrical nanodomain</title><title>Polymer (Guilford)</title><description>The crystallization behavior of polymers confined in nanocylinders has been investigated by dynamic Monte Carlo simulation. For confined polymer systems with different molecular weights, the evolution of crystallinity with Monte Carlo time shows first-order kinetics, which means that homogeneous nucleation controls the whole crystallization process. At this time, the nucleation mechanism changes from intermolecular nucleation to intramolecular nucleation with the increase of molecular weights. For confined polymer systems with different interface interactions, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation when the interface interaction changes from 0 to −1.5. For confined polymer systems with different lateral sizes, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation with the decrease of lateral sizes. During crystallization, crystal orientation and morphology are also closely related to molecular weights, interface interactions and lateral sizes. These simulation results may provide theoretical guidance for the design and preparation of high-performance confined polymer materials. [Display omitted] •Stronger space-confined effect leads to the nucleation-dominant crystallization.•The nucleation mechanism changed with the increase of molecular weights.•The nucleation mode changed with the decrease of lateral sizes.</description><subject>Confined polymers</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Molecular weight</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Polymers</subject><subject>Simulation</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsF1x-Q2bTMrkcEXjLhRtyFJbyElTcakI9Svt0MHt64unHsenEPINaMrRll12612wY09xhVQmDAAwcQJWTBRFznAmp2SBaUF5IWo2Dm5SKmjlEIJfEE-X4NDs3cqZsn20x1s8FloMxPHNCjn7M8fdExJmQm-tR6bzPrMjM76JlqjXOaVD03olfWX5KxVLuHV8S7Jx-PD--Y53749vWzut7nhtBhyrkut25IpiqJRVJmmQsRWrxnWRqNCDZrXlQLgyCnnuhBGQVGv1zVVAqFYkpvZdxfD1x7TILuwj36KlMBLxpkAKiZWObNMDClFbOUu2l7FUTIqDxPKTh7LycOEcp5w0t3NOpwqfNvpm4xFb7CxEc0gm2D_cfgFymd_jw</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Ming, Yongqiang</creator><creator>Zhou, Zhiping</creator><creator>Zhang, Shuihua</creator><creator>Wei, Yangyang</creator><creator>Hao, Tongfan</creator><creator>Nie, Yijing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20201007</creationdate><title>Molecular simulation of crystallization of polymers confined in cylindrical nanodomain</title><author>Ming, Yongqiang ; Zhou, Zhiping ; Zhang, Shuihua ; Wei, Yangyang ; Hao, Tongfan ; Nie, Yijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Confined polymers</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Molecular weight</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Polymers</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Yongqiang</creatorcontrib><creatorcontrib>Zhou, Zhiping</creatorcontrib><creatorcontrib>Zhang, Shuihua</creatorcontrib><creatorcontrib>Wei, Yangyang</creatorcontrib><creatorcontrib>Hao, Tongfan</creatorcontrib><creatorcontrib>Nie, Yijing</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Yongqiang</au><au>Zhou, Zhiping</au><au>Zhang, Shuihua</au><au>Wei, Yangyang</au><au>Hao, Tongfan</au><au>Nie, Yijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulation of crystallization of polymers confined in cylindrical nanodomain</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-10-07</date><risdate>2020</risdate><volume>206</volume><spage>122818</spage><pages>122818-</pages><artnum>122818</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The crystallization behavior of polymers confined in nanocylinders has been investigated by dynamic Monte Carlo simulation. For confined polymer systems with different molecular weights, the evolution of crystallinity with Monte Carlo time shows first-order kinetics, which means that homogeneous nucleation controls the whole crystallization process. At this time, the nucleation mechanism changes from intermolecular nucleation to intramolecular nucleation with the increase of molecular weights. For confined polymer systems with different interface interactions, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation when the interface interaction changes from 0 to −1.5. For confined polymer systems with different lateral sizes, the nucleation mode changes from homogeneous nucleation to heterogeneous nucleation with the decrease of lateral sizes. During crystallization, crystal orientation and morphology are also closely related to molecular weights, interface interactions and lateral sizes. These simulation results may provide theoretical guidance for the design and preparation of high-performance confined polymer materials. [Display omitted] •Stronger space-confined effect leads to the nucleation-dominant crystallization.•The nucleation mechanism changed with the increase of molecular weights.•The nucleation mode changed with the decrease of lateral sizes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.122818</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2020-10, Vol.206, p.122818, Article 122818
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2451418208
source ScienceDirect Freedom Collection 2022-2024
subjects Confined polymers
Crystal structure
Crystallization
Molecular weight
Monte Carlo simulation
Morphology
Nucleation
Polymers
Simulation
title Molecular simulation of crystallization of polymers confined in cylindrical nanodomain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulation%20of%20crystallization%20of%20polymers%20confined%20in%20cylindrical%20nanodomain&rft.jtitle=Polymer%20(Guilford)&rft.au=Ming,%20Yongqiang&rft.date=2020-10-07&rft.volume=206&rft.spage=122818&rft.pages=122818-&rft.artnum=122818&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.122818&rft_dat=%3Cproquest_cross%3E2451418208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-4b5bbf51a0e8da0acd6eeefb91e7cbeaeb2b476a224e4044b38ca2379970a8e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451418208&rft_id=info:pmid/&rfr_iscdi=true