Loading…

Facile designing and assessment of photovoltaic performance of hydrothermally grown kesterite Cu2ZnSnS4 thin films: Influence of deposition time

[Display omitted] •Cost effective and non-toxic one step hydrothermal route to direct synthesis of Cu2ZnSnS4 thin films.•Pure kesterite crystal structure shows optimum band gap in the range of 1.52–1.41 eV.•FTO/CZTS photocathode shows best photoconversion efficiency (η) of 3.21%.•Impedance analysis...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2020-05, Vol.201, p.102-115
Main Authors: Patil, Satish S., Mane, Rahul M., Mali, Sawanta S., Hong, Chang K., Bhosale, Popatrao N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Cost effective and non-toxic one step hydrothermal route to direct synthesis of Cu2ZnSnS4 thin films.•Pure kesterite crystal structure shows optimum band gap in the range of 1.52–1.41 eV.•FTO/CZTS photocathode shows best photoconversion efficiency (η) of 3.21%.•Impedance analysis confirms the generation of lower charge transfer resistance (Rct). Herein, low cost precursor source Cu2ZnSnS4 (CZTS) nanocrystalline thin films at various reaction time were successfully synthesized via one step hydrothermal route. Hydrothermal route was employed to achieve control over the size and grain growth of CZTS films. As deposited CZTS films were analyzed for its optoelectronic, structural, morphological and electrochemical properties to investigate the effect of hydrothermal reaction time on growth and photovoltaic performance. The hydrothermal synthesis promoted to high absorption (104 cm−1) of the CZTS film with a decrease in optical band gap energy from 1.52 eV to 1.41 eV. Structural study revealed that, improved crystallinity with A1 mode of vibration for pure phase kesterite CZTS structure. Morphological transition was observed from nanograins to well grown and compact nanospheres. Compositional analysis illustrates, stoichiometric CZTS film formation with the desired valence state of Cu+, Zn2+, Sn4+ and S2− elements. Current density-voltage (J-V) measurement of FTO/CZTS/(0.3 M Eu3+/Eu2+)/Graphite cell configuration shows, highest photocurrent of 2.60 mA/cm2 and open circuit voltage of 754 mV was observed for CZTS4 sample with best photoconversion efficiency (η) 3.21% under illumination of 30 mW/cm2 light intensity. Electron impedance spectroscopy (EIS) showed that, generation of lower charge transfer resistance (Rct) with increase in reaction time.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2020.02.089