Loading…

Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization

Magnetite-loaded graphene oxide nanocomposites are currently studied as an easily retrievable efficient adsorbent of dyes and heavy metals. Therefore, the search for facile and low cost synthetical methods to prepare them is intensively pursued. This work describes a simple one-pot method to produce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2020-05, Vol.31 (10), p.7490-7498
Main Authors: Pérez-Guzmán, M. A., Ortega-Amaya, R., Santoyo-Salazar, J., Ortega-López, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23
cites cdi_FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23
container_end_page 7498
container_issue 10
container_start_page 7490
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Pérez-Guzmán, M. A.
Ortega-Amaya, R.
Santoyo-Salazar, J.
Ortega-López, M.
description Magnetite-loaded graphene oxide nanocomposites are currently studied as an easily retrievable efficient adsorbent of dyes and heavy metals. Therefore, the search for facile and low cost synthetical methods to prepare them is intensively pursued. This work describes a simple one-pot method to produce superparamagnetic magnetite nanoparticles (Fe 3 O 4 ), and a hybrid nanocomposite of magnetite nanoparticles decorating reduced graphene oxide (Fe 3 O 4 –rGO) by reacting ferrous chloride with urea in water or graphene oxide–water dispersions, respectively. The synthetical method is based on temperature-assisted urea decomposition in water. The final products comprised Fe 3 O 4 nanoparticles or Fe 3 O 4 -decorated rGO sheets. Outstandingly, despite the polydisperse nature of Fe 3 O 4 , both materials are nearly superparamagnetic, and GO was partially reduced during the Fe 3 O 4 –GO preparation to produce Fe 3 O 4 –rGO. We propose plausible pathways for the Fe 3 O 4 formation, as well as a preliminary study on methylene blue degradation in water, using the Fe 3 O 4 –rGO nanocomposite.
doi_str_mv 10.1007/s10854-020-02989-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396578491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396578491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62iaNG3iTgZvMODGAXchTZNphpmkJileNr66nQu4c3EInPzff-AD4LLA1wXG9U0qMGclwgSPI7hA7AhMClZTVHLydgwmWLAalYyQU3CW0gpjXJWUT8DPIhqFGpVMC9OXz51JLsFg4UYtvckuG-iVD72K2em1SVD5FrqcoA6bPqTt_4fLHVxG1XfGGxg-XWtuYcpx0HmIar0jDm0a6k5FpbOJ7ltlF_w5OLFqnczF4Z2CxcP96-wJzV8en2d3c6RpITKyjHMscE0sVSW31ipKqpozQbjmxDZV1ehx3TSlaY2oGdEtr6jVuGlFrRtCp-Bq39vH8D6YlOUqDNGPJyWhomI1L0Uxpsg-pWNIKRor--g2Kn7JAsutaLkXLUfRcidashGieyiNYb808a_6H-oXwCKEvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396578491</pqid></control><display><type>article</type><title>Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization</title><source>Springer Link</source><creator>Pérez-Guzmán, M. A. ; Ortega-Amaya, R. ; Santoyo-Salazar, J. ; Ortega-López, M.</creator><creatorcontrib>Pérez-Guzmán, M. A. ; Ortega-Amaya, R. ; Santoyo-Salazar, J. ; Ortega-López, M.</creatorcontrib><description>Magnetite-loaded graphene oxide nanocomposites are currently studied as an easily retrievable efficient adsorbent of dyes and heavy metals. Therefore, the search for facile and low cost synthetical methods to prepare them is intensively pursued. This work describes a simple one-pot method to produce superparamagnetic magnetite nanoparticles (Fe 3 O 4 ), and a hybrid nanocomposite of magnetite nanoparticles decorating reduced graphene oxide (Fe 3 O 4 –rGO) by reacting ferrous chloride with urea in water or graphene oxide–water dispersions, respectively. The synthetical method is based on temperature-assisted urea decomposition in water. The final products comprised Fe 3 O 4 nanoparticles or Fe 3 O 4 -decorated rGO sheets. Outstandingly, despite the polydisperse nature of Fe 3 O 4 , both materials are nearly superparamagnetic, and GO was partially reduced during the Fe 3 O 4 –GO preparation to produce Fe 3 O 4 –rGO. We propose plausible pathways for the Fe 3 O 4 formation, as well as a preliminary study on methylene blue degradation in water, using the Fe 3 O 4 –rGO nanocomposite.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-02989-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Graphene ; Heavy metals ; Iron chlorides ; Iron oxides ; Magnetic properties ; Magnetite ; Materials Science ; Methylene blue ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Structural analysis ; Ureas</subject><ispartof>Journal of materials science. Materials in electronics, 2020-05, Vol.31 (10), p.7490-7498</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23</citedby><cites>FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23</cites><orcidid>0000-0003-4208-150X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Pérez-Guzmán, M. A.</creatorcontrib><creatorcontrib>Ortega-Amaya, R.</creatorcontrib><creatorcontrib>Santoyo-Salazar, J.</creatorcontrib><creatorcontrib>Ortega-López, M.</creatorcontrib><title>Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Magnetite-loaded graphene oxide nanocomposites are currently studied as an easily retrievable efficient adsorbent of dyes and heavy metals. Therefore, the search for facile and low cost synthetical methods to prepare them is intensively pursued. This work describes a simple one-pot method to produce superparamagnetic magnetite nanoparticles (Fe 3 O 4 ), and a hybrid nanocomposite of magnetite nanoparticles decorating reduced graphene oxide (Fe 3 O 4 –rGO) by reacting ferrous chloride with urea in water or graphene oxide–water dispersions, respectively. The synthetical method is based on temperature-assisted urea decomposition in water. The final products comprised Fe 3 O 4 nanoparticles or Fe 3 O 4 -decorated rGO sheets. Outstandingly, despite the polydisperse nature of Fe 3 O 4 , both materials are nearly superparamagnetic, and GO was partially reduced during the Fe 3 O 4 –GO preparation to produce Fe 3 O 4 –rGO. We propose plausible pathways for the Fe 3 O 4 formation, as well as a preliminary study on methylene blue degradation in water, using the Fe 3 O 4 –rGO nanocomposite.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Graphene</subject><subject>Heavy metals</subject><subject>Iron chlorides</subject><subject>Iron oxides</subject><subject>Magnetic properties</subject><subject>Magnetite</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Structural analysis</subject><subject>Ureas</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62iaNG3iTgZvMODGAXchTZNphpmkJileNr66nQu4c3EInPzff-AD4LLA1wXG9U0qMGclwgSPI7hA7AhMClZTVHLydgwmWLAalYyQU3CW0gpjXJWUT8DPIhqFGpVMC9OXz51JLsFg4UYtvckuG-iVD72K2em1SVD5FrqcoA6bPqTt_4fLHVxG1XfGGxg-XWtuYcpx0HmIar0jDm0a6k5FpbOJ7ltlF_w5OLFqnczF4Z2CxcP96-wJzV8en2d3c6RpITKyjHMscE0sVSW31ipKqpozQbjmxDZV1ehx3TSlaY2oGdEtr6jVuGlFrRtCp-Bq39vH8D6YlOUqDNGPJyWhomI1L0Uxpsg-pWNIKRor--g2Kn7JAsutaLkXLUfRcidashGieyiNYb808a_6H-oXwCKEvA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Pérez-Guzmán, M. A.</creator><creator>Ortega-Amaya, R.</creator><creator>Santoyo-Salazar, J.</creator><creator>Ortega-López, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4208-150X</orcidid></search><sort><creationdate>20200501</creationdate><title>Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization</title><author>Pérez-Guzmán, M. A. ; Ortega-Amaya, R. ; Santoyo-Salazar, J. ; Ortega-López, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Graphene</topic><topic>Heavy metals</topic><topic>Iron chlorides</topic><topic>Iron oxides</topic><topic>Magnetic properties</topic><topic>Magnetite</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Structural analysis</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Guzmán, M. A.</creatorcontrib><creatorcontrib>Ortega-Amaya, R.</creatorcontrib><creatorcontrib>Santoyo-Salazar, J.</creatorcontrib><creatorcontrib>Ortega-López, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Guzmán, M. A.</au><au>Ortega-Amaya, R.</au><au>Santoyo-Salazar, J.</au><au>Ortega-López, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>31</volume><issue>10</issue><spage>7490</spage><epage>7498</epage><pages>7490-7498</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Magnetite-loaded graphene oxide nanocomposites are currently studied as an easily retrievable efficient adsorbent of dyes and heavy metals. Therefore, the search for facile and low cost synthetical methods to prepare them is intensively pursued. This work describes a simple one-pot method to produce superparamagnetic magnetite nanoparticles (Fe 3 O 4 ), and a hybrid nanocomposite of magnetite nanoparticles decorating reduced graphene oxide (Fe 3 O 4 –rGO) by reacting ferrous chloride with urea in water or graphene oxide–water dispersions, respectively. The synthetical method is based on temperature-assisted urea decomposition in water. The final products comprised Fe 3 O 4 nanoparticles or Fe 3 O 4 -decorated rGO sheets. Outstandingly, despite the polydisperse nature of Fe 3 O 4 , both materials are nearly superparamagnetic, and GO was partially reduced during the Fe 3 O 4 –GO preparation to produce Fe 3 O 4 –rGO. We propose plausible pathways for the Fe 3 O 4 formation, as well as a preliminary study on methylene blue degradation in water, using the Fe 3 O 4 –rGO nanocomposite.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-02989-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4208-150X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-05, Vol.31 (10), p.7490-7498
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2396578491
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Graphene
Heavy metals
Iron chlorides
Iron oxides
Magnetic properties
Magnetite
Materials Science
Methylene blue
Nanocomposites
Nanoparticles
Optical and Electronic Materials
Structural analysis
Ureas
title Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T06%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urea-based%20synthesis%20of%20magnetite%20nanoparticles%20and%20its%20composite%20with%20graphene%20oxide:%20structural%20and%20magnetic%20characterization&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=P%C3%A9rez-Guzm%C3%A1n,%20M.%20A.&rft.date=2020-05-01&rft.volume=31&rft.issue=10&rft.spage=7490&rft.epage=7498&rft.pages=7490-7498&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-02989-5&rft_dat=%3Cproquest_cross%3E2396578491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f58809072f3a48fffa326785928c82fb66bc8ffbb4ede9752cd863fc0bd97cb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2396578491&rft_id=info:pmid/&rfr_iscdi=true