Loading…

IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs

Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO 2 polymorphs, and GeO 2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass...

Full description

Saved in:
Bibliographic Details
Published in:Physics and chemistry of minerals 2009-10, Vol.36 (9), p.489-509
Main Authors: Thomas, Sylvia-Monique, Koch-Müller, Monika, Reichart, Patrick, Rhede, Dieter, Thomas, Rainer, Wirth, Richard, Matsyuk, Stanislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93
cites cdi_FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93
container_end_page 509
container_issue 9
container_start_page 489
container_title Physics and chemistry of minerals
container_volume 36
creator Thomas, Sylvia-Monique
Koch-Müller, Monika
Reichart, Patrick
Rhede, Dieter
Thomas, Rainer
Wirth, Richard
Matsyuk, Stanislav
description Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO 2 polymorphs, and GeO 2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO 2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  ), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  ; stishovite ε = 485,000 ± 109,000  ). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.
doi_str_mv 10.1007/s00269-009-0295-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262079800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262079800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKsfwFvAa6OT7HY3OUrRWhAKPs4hm4embDdrslX67U1dwZOHmTn8HwM_hC4pXFOA-iYBsEoQgDxMzAk9QhNaFowwYPQYTaAoGaG1oKfoLKUNQBbr-QStV09Yq9Y3UQ0-dAm7EPGXGmzExua99d2PgH2HQ-s_fWdnOJKlXbMZVp3Bz37NcB_a_TbE_j2doxOn2mQvfu8Uvd7fvSweyON6uVrcPhJdcDaQxhSiZrqquVZOKV4JI4xuTOMUd4w3GlSpG1c7zsvScmOsmheVLamhpeGNKKboauztY_jY2TTITdjFLr-UjFUMasEBsouOLh1DStE62Ue_VXEvKcgDNzlyk5mbPHCTNGfYmEnZ273Z-Nf8f-gbQXpwdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262079800</pqid></control><display><type>article</type><title>IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs</title><source>Springer Link</source><creator>Thomas, Sylvia-Monique ; Koch-Müller, Monika ; Reichart, Patrick ; Rhede, Dieter ; Thomas, Rainer ; Wirth, Richard ; Matsyuk, Stanislav</creator><creatorcontrib>Thomas, Sylvia-Monique ; Koch-Müller, Monika ; Reichart, Patrick ; Rhede, Dieter ; Thomas, Rainer ; Wirth, Richard ; Matsyuk, Stanislav</creatorcontrib><description>Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO 2 polymorphs, and GeO 2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO 2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  ), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  ; stishovite ε = 485,000 ± 109,000  ). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-009-0295-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Absorptivity ; Coesite ; Crystallography and Scattering Methods ; Deep water ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; Germanium oxides ; Hydrologic cycle ; Mass spectrometry ; Mineral Resources ; Mineralogy ; Minerals ; Olivine ; Original Paper ; Point defects ; Proton scattering ; Raman spectroscopy ; Secondary ion mass spectrometry ; Silicon dioxide ; Spectroscopy ; Stishovite</subject><ispartof>Physics and chemistry of minerals, 2009-10, Vol.36 (9), p.489-509</ispartof><rights>Springer-Verlag 2009</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93</citedby><cites>FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Thomas, Sylvia-Monique</creatorcontrib><creatorcontrib>Koch-Müller, Monika</creatorcontrib><creatorcontrib>Reichart, Patrick</creatorcontrib><creatorcontrib>Rhede, Dieter</creatorcontrib><creatorcontrib>Thomas, Rainer</creatorcontrib><creatorcontrib>Wirth, Richard</creatorcontrib><creatorcontrib>Matsyuk, Stanislav</creatorcontrib><title>IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO 2 polymorphs, and GeO 2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO 2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  ), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  ; stishovite ε = 485,000 ± 109,000  ). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.</description><subject>Absorptivity</subject><subject>Coesite</subject><subject>Crystallography and Scattering Methods</subject><subject>Deep water</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Germanium oxides</subject><subject>Hydrologic cycle</subject><subject>Mass spectrometry</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Olivine</subject><subject>Original Paper</subject><subject>Point defects</subject><subject>Proton scattering</subject><subject>Raman spectroscopy</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Stishovite</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MoWKsfwFvAa6OT7HY3OUrRWhAKPs4hm4embDdrslX67U1dwZOHmTn8HwM_hC4pXFOA-iYBsEoQgDxMzAk9QhNaFowwYPQYTaAoGaG1oKfoLKUNQBbr-QStV09Yq9Y3UQ0-dAm7EPGXGmzExua99d2PgH2HQ-s_fWdnOJKlXbMZVp3Bz37NcB_a_TbE_j2doxOn2mQvfu8Uvd7fvSweyON6uVrcPhJdcDaQxhSiZrqquVZOKV4JI4xuTOMUd4w3GlSpG1c7zsvScmOsmheVLamhpeGNKKboauztY_jY2TTITdjFLr-UjFUMasEBsouOLh1DStE62Ue_VXEvKcgDNzlyk5mbPHCTNGfYmEnZ273Z-Nf8f-gbQXpwdQ</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Thomas, Sylvia-Monique</creator><creator>Koch-Müller, Monika</creator><creator>Reichart, Patrick</creator><creator>Rhede, Dieter</creator><creator>Thomas, Rainer</creator><creator>Wirth, Richard</creator><creator>Matsyuk, Stanislav</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20091001</creationdate><title>IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs</title><author>Thomas, Sylvia-Monique ; Koch-Müller, Monika ; Reichart, Patrick ; Rhede, Dieter ; Thomas, Rainer ; Wirth, Richard ; Matsyuk, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Absorptivity</topic><topic>Coesite</topic><topic>Crystallography and Scattering Methods</topic><topic>Deep water</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Germanium oxides</topic><topic>Hydrologic cycle</topic><topic>Mass spectrometry</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Olivine</topic><topic>Original Paper</topic><topic>Point defects</topic><topic>Proton scattering</topic><topic>Raman spectroscopy</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Stishovite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Sylvia-Monique</creatorcontrib><creatorcontrib>Koch-Müller, Monika</creatorcontrib><creatorcontrib>Reichart, Patrick</creatorcontrib><creatorcontrib>Rhede, Dieter</creatorcontrib><creatorcontrib>Thomas, Rainer</creatorcontrib><creatorcontrib>Wirth, Richard</creatorcontrib><creatorcontrib>Matsyuk, Stanislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Sylvia-Monique</au><au>Koch-Müller, Monika</au><au>Reichart, Patrick</au><au>Rhede, Dieter</au><au>Thomas, Rainer</au><au>Wirth, Richard</au><au>Matsyuk, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>489</spage><epage>509</epage><pages>489-509</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO 2 polymorphs, and GeO 2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO 2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  ), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  ; stishovite ε = 485,000 ± 109,000  ). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00269-009-0295-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2009-10, Vol.36 (9), p.489-509
issn 0342-1791
1432-2021
language eng
recordid cdi_proquest_journals_2262079800
source Springer Link
subjects Absorptivity
Coesite
Crystallography and Scattering Methods
Deep water
Earth and Environmental Science
Earth Sciences
Geochemistry
Germanium oxides
Hydrologic cycle
Mass spectrometry
Mineral Resources
Mineralogy
Minerals
Olivine
Original Paper
Point defects
Proton scattering
Raman spectroscopy
Secondary ion mass spectrometry
Silicon dioxide
Spectroscopy
Stishovite
title IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T06%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IR%20calibrations%20for%20water%20determination%20in%20olivine,%20r-GeO2,%20and%20SiO2%20polymorphs&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Thomas,%20Sylvia-Monique&rft.date=2009-10-01&rft.volume=36&rft.issue=9&rft.spage=489&rft.epage=509&rft.pages=489-509&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-009-0295-1&rft_dat=%3Cproquest_cross%3E2262079800%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-bd3972c678cafaa869d9dcbdbfa8f28bc0a4cbf7f8844e8ddea536e41d14d8b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262079800&rft_id=info:pmid/&rfr_iscdi=true