Loading…

On Thermal Acceleration of Medical Device Polymer Aging

An empirical rule, the 10 °C rule, states that chemical reaction rates are doubled for every 10 °C temperature increase. This is often used in thermally accelerated medical device polymer aging studies. Here, theoretical evidence and limitations for the rule are analyzed. Thus, a new and more accura...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on device and materials reliability 2019-06, Vol.19 (2), p.313-321
Main Authors: Janting, Jakob, Theander, Julie Grundtvig, Egesborg, Henrik
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83
cites cdi_FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83
container_end_page 321
container_issue 2
container_start_page 313
container_title IEEE transactions on device and materials reliability
container_volume 19
creator Janting, Jakob
Theander, Julie Grundtvig
Egesborg, Henrik
description An empirical rule, the 10 °C rule, states that chemical reaction rates are doubled for every 10 °C temperature increase. This is often used in thermally accelerated medical device polymer aging studies. Here, theoretical evidence and limitations for the rule are analyzed. Thus, a new and more accurate rule based on averaging Arrhenius chemical reaction rate ratios over typical activation energies 0.1 eV-0.9 eV in the normal medical device accelerated test temperature interval 25 °C-70 °C is proposed. A comparison of the 10 °C rule shows that the 10 °C rule provides similar estimates, but only at the reference temperature 25 °C. Fitting the reaction rate ratio based on the Arrhenius equation using the reference temperature 25 °C to the 10 °C rule data reveals that the best agreement is achieved with thermal aging activation energy of 0.67 eV.
doi_str_mv 10.1109/TDMR.2019.2907080
format magazinearticle
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2237671654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672814</ieee_id><sourcerecordid>2237671654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_d49ltYvaKlIPC_b7aSmpEndtEL_vRtaPM0wPO878BByT2FEKdinYjr_HDGgdsQsaDBwQQZUSpMzqcVlv3PIBTfmmtx03QYSqaUaEL1osuIb49bX2TgErDH6fdU2WVtmc1xVId2n-FsFzD7a-rjFmI3XVbO-JVelrzu8O88h-Xp5LiZv-Wzx-j4Zz_LAudrnKBVj6OUSQBsGS0V90MLqYNOdC22kWEFQIKRknIdALTOrkqKmzAuLhg_J46l3F9ufA3Z7t2kPsUkvXSrQSlMlRaLoiQqx7bqIpdvFauvj0VFwvR_X-3G9H3f2kzIPp0yFiP-8UZoZKvgfyrVeFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2237671654</pqid></control><display><type>magazinearticle</type><title>On Thermal Acceleration of Medical Device Polymer Aging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Janting, Jakob ; Theander, Julie Grundtvig ; Egesborg, Henrik</creator><creatorcontrib>Janting, Jakob ; Theander, Julie Grundtvig ; Egesborg, Henrik</creatorcontrib><description>An empirical rule, the 10 °C rule, states that chemical reaction rates are doubled for every 10 °C temperature increase. This is often used in thermally accelerated medical device polymer aging studies. Here, theoretical evidence and limitations for the rule are analyzed. Thus, a new and more accurate rule based on averaging Arrhenius chemical reaction rate ratios over typical activation energies 0.1 eV-0.9 eV in the normal medical device accelerated test temperature interval 25 °C-70 °C is proposed. A comparison of the 10 °C rule shows that the 10 °C rule provides similar estimates, but only at the reference temperature 25 °C. Fitting the reaction rate ratio based on the Arrhenius equation using the reference temperature 25 °C to the 10 °C rule data reveals that the best agreement is achieved with thermal aging activation energy of 0.67 eV.</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2019.2907080</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>10 °C rule analysis ; Accelerated aging tests ; Accelerated tests ; Acceleration ; activation energies ; Activation energy ; Aging ; Chemical reactions ; Chemicals ; Empirical analysis ; Materials reliability ; Medical devices ; Medical electronics ; Medical equipment ; Organic chemistry ; polymer degradation ; Polymers ; Temperature ; Temperature dependence ; thermal acceleration</subject><ispartof>IEEE transactions on device and materials reliability, 2019-06, Vol.19 (2), p.313-321</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83</citedby><cites>FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83</cites><orcidid>0000-0001-8964-6729 ; 0000-0003-2776-6981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>786,790,27958,55147</link.rule.ids></links><search><creatorcontrib>Janting, Jakob</creatorcontrib><creatorcontrib>Theander, Julie Grundtvig</creatorcontrib><creatorcontrib>Egesborg, Henrik</creatorcontrib><title>On Thermal Acceleration of Medical Device Polymer Aging</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>An empirical rule, the 10 °C rule, states that chemical reaction rates are doubled for every 10 °C temperature increase. This is often used in thermally accelerated medical device polymer aging studies. Here, theoretical evidence and limitations for the rule are analyzed. Thus, a new and more accurate rule based on averaging Arrhenius chemical reaction rate ratios over typical activation energies 0.1 eV-0.9 eV in the normal medical device accelerated test temperature interval 25 °C-70 °C is proposed. A comparison of the 10 °C rule shows that the 10 °C rule provides similar estimates, but only at the reference temperature 25 °C. Fitting the reaction rate ratio based on the Arrhenius equation using the reference temperature 25 °C to the 10 °C rule data reveals that the best agreement is achieved with thermal aging activation energy of 0.67 eV.</description><subject>10 °C rule analysis</subject><subject>Accelerated aging tests</subject><subject>Accelerated tests</subject><subject>Acceleration</subject><subject>activation energies</subject><subject>Activation energy</subject><subject>Aging</subject><subject>Chemical reactions</subject><subject>Chemicals</subject><subject>Empirical analysis</subject><subject>Materials reliability</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Organic chemistry</subject><subject>polymer degradation</subject><subject>Polymers</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>thermal acceleration</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2019</creationdate><recordtype>magazinearticle</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_d49ltYvaKlIPC_b7aSmpEndtEL_vRtaPM0wPO878BByT2FEKdinYjr_HDGgdsQsaDBwQQZUSpMzqcVlv3PIBTfmmtx03QYSqaUaEL1osuIb49bX2TgErDH6fdU2WVtmc1xVId2n-FsFzD7a-rjFmI3XVbO-JVelrzu8O88h-Xp5LiZv-Wzx-j4Zz_LAudrnKBVj6OUSQBsGS0V90MLqYNOdC22kWEFQIKRknIdALTOrkqKmzAuLhg_J46l3F9ufA3Z7t2kPsUkvXSrQSlMlRaLoiQqx7bqIpdvFauvj0VFwvR_X-3G9H3f2kzIPp0yFiP-8UZoZKvgfyrVeFw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Janting, Jakob</creator><creator>Theander, Julie Grundtvig</creator><creator>Egesborg, Henrik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8964-6729</orcidid><orcidid>https://orcid.org/0000-0003-2776-6981</orcidid></search><sort><creationdate>20190601</creationdate><title>On Thermal Acceleration of Medical Device Polymer Aging</title><author>Janting, Jakob ; Theander, Julie Grundtvig ; Egesborg, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2019</creationdate><topic>10 °C rule analysis</topic><topic>Accelerated aging tests</topic><topic>Accelerated tests</topic><topic>Acceleration</topic><topic>activation energies</topic><topic>Activation energy</topic><topic>Aging</topic><topic>Chemical reactions</topic><topic>Chemicals</topic><topic>Empirical analysis</topic><topic>Materials reliability</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Organic chemistry</topic><topic>polymer degradation</topic><topic>Polymers</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>thermal acceleration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janting, Jakob</creatorcontrib><creatorcontrib>Theander, Julie Grundtvig</creatorcontrib><creatorcontrib>Egesborg, Henrik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janting, Jakob</au><au>Theander, Julie Grundtvig</au><au>Egesborg, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Thermal Acceleration of Medical Device Polymer Aging</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>19</volume><issue>2</issue><spage>313</spage><epage>321</epage><pages>313-321</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>An empirical rule, the 10 °C rule, states that chemical reaction rates are doubled for every 10 °C temperature increase. This is often used in thermally accelerated medical device polymer aging studies. Here, theoretical evidence and limitations for the rule are analyzed. Thus, a new and more accurate rule based on averaging Arrhenius chemical reaction rate ratios over typical activation energies 0.1 eV-0.9 eV in the normal medical device accelerated test temperature interval 25 °C-70 °C is proposed. A comparison of the 10 °C rule shows that the 10 °C rule provides similar estimates, but only at the reference temperature 25 °C. Fitting the reaction rate ratio based on the Arrhenius equation using the reference temperature 25 °C to the 10 °C rule data reveals that the best agreement is achieved with thermal aging activation energy of 0.67 eV.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2019.2907080</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8964-6729</orcidid><orcidid>https://orcid.org/0000-0003-2776-6981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-4388
ispartof IEEE transactions on device and materials reliability, 2019-06, Vol.19 (2), p.313-321
issn 1530-4388
1558-2574
language eng
recordid cdi_proquest_journals_2237671654
source IEEE Electronic Library (IEL) Journals
subjects 10 °C rule analysis
Accelerated aging tests
Accelerated tests
Acceleration
activation energies
Activation energy
Aging
Chemical reactions
Chemicals
Empirical analysis
Materials reliability
Medical devices
Medical electronics
Medical equipment
Organic chemistry
polymer degradation
Polymers
Temperature
Temperature dependence
thermal acceleration
title On Thermal Acceleration of Medical Device Polymer Aging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T22%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Thermal%20Acceleration%20of%20Medical%20Device%20Polymer%20Aging&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Janting,%20Jakob&rft.date=2019-06-01&rft.volume=19&rft.issue=2&rft.spage=313&rft.epage=321&rft.pages=313-321&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2019.2907080&rft_dat=%3Cproquest_ieee_%3E2237671654%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-e5622ea5b007820b61ac7497c9622347854d0c60455233cc1928df1e712a49e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237671654&rft_id=info:pmid/&rft_ieee_id=8672814&rfr_iscdi=true