Loading…

“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance

Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831
Main Authors: Yin, Chengyao, Liu, Xinhua, Wei, Junjie, Tan, Rui, Zhou, Jie, Ouyang, Mengzheng, Wang, Huizhi, Cooper, Samuel J., Wu, Billy, George, Chandramohan, Wang, Qigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53
cites cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53
container_end_page 8831
container_issue 15
container_start_page 8826
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Yin, Chengyao
Liu, Xinhua
Wei, Junjie
Tan, Rui
Zhou, Jie
Ouyang, Mengzheng
Wang, Huizhi
Cooper, Samuel J.
Wu, Billy
George, Chandramohan
Wang, Qigang
description Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm −1 , which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm −2 at a current density of 1.0 mA cm −2 . Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm −2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm −2 .
doi_str_mv 10.1039/C9TA01155B
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205934690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205934690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhhdRsNRefIKAN2E12STbzbEWrULBSz0v6WS2Tdlu1iRr6a0Poi_XJ3Glov9l_h_-mYEvSa4ZvWOUq_upWkwoY1I-nCWDjEqajoXKz_98UVwmoxA2tFdBaa7UIOmOh89JXae2SWdYHw9fxGCwq4ZUzpPQtehBtxpsdD6Q6Hbam0CCq61JQ9QRCTboV_t-68MCBrKzcU3iGv1W10Q3hmwR1rqx0Edw27a2ugG8Si4qXQcc_c5h8vb0uJg-p_PX2ct0Mk-B8yymS9CgTAEKqqXJpKA5z5XgRmvMmKYCpBFK6nGWcwQsKlFINpaGLhkFgSD5MLk53W29e-8wxHLjOt_0L8ush6K4yBXtW7enFngXgseqbL3dar8vGS1_yJb_ZPk3Y-5ulw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205934690</pqid></control><display><type>article</type><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</creator><creatorcontrib>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</creatorcontrib><description>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm −1 , which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm −2 at a current density of 1.0 mA cm −2 . Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm −2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm −2 .</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA01155B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Composite materials ; Current carriers ; Current density ; Electrodes ; Electrolytes ; Energy storage ; Interfaces ; Ion currents ; Ionic liquids ; Ions ; Mechanical properties ; Operating temperature ; Semisolids ; Solid state ; Strain ; Supercapacitors</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</citedby><cites>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</cites><orcidid>0000-0002-1415-2377 ; 0000-0002-4026-3337 ; 0000-0003-4055-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,4031,27935,27936,27937</link.rule.ids></links><search><creatorcontrib>Yin, Chengyao</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Wei, Junjie</creatorcontrib><creatorcontrib>Tan, Rui</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ouyang, Mengzheng</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Cooper, Samuel J.</creatorcontrib><creatorcontrib>Wu, Billy</creatorcontrib><creatorcontrib>George, Chandramohan</creatorcontrib><creatorcontrib>Wang, Qigang</creatorcontrib><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm −1 , which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm −2 at a current density of 1.0 mA cm −2 . Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm −2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm −2 .</description><subject>Capacitance</subject><subject>Composite materials</subject><subject>Current carriers</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Interfaces</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>Operating temperature</subject><subject>Semisolids</subject><subject>Solid state</subject><subject>Strain</subject><subject>Supercapacitors</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhhdRsNRefIKAN2E12STbzbEWrULBSz0v6WS2Tdlu1iRr6a0Poi_XJ3Glov9l_h_-mYEvSa4ZvWOUq_upWkwoY1I-nCWDjEqajoXKz_98UVwmoxA2tFdBaa7UIOmOh89JXae2SWdYHw9fxGCwq4ZUzpPQtehBtxpsdD6Q6Hbam0CCq61JQ9QRCTboV_t-68MCBrKzcU3iGv1W10Q3hmwR1rqx0Edw27a2ugG8Si4qXQcc_c5h8vb0uJg-p_PX2ct0Mk-B8yymS9CgTAEKqqXJpKA5z5XgRmvMmKYCpBFK6nGWcwQsKlFINpaGLhkFgSD5MLk53W29e-8wxHLjOt_0L8ush6K4yBXtW7enFngXgseqbL3dar8vGS1_yJb_ZPk3Y-5ulw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yin, Chengyao</creator><creator>Liu, Xinhua</creator><creator>Wei, Junjie</creator><creator>Tan, Rui</creator><creator>Zhou, Jie</creator><creator>Ouyang, Mengzheng</creator><creator>Wang, Huizhi</creator><creator>Cooper, Samuel J.</creator><creator>Wu, Billy</creator><creator>George, Chandramohan</creator><creator>Wang, Qigang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1415-2377</orcidid><orcidid>https://orcid.org/0000-0002-4026-3337</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid></search><sort><creationdate>2019</creationdate><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><author>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>Composite materials</topic><topic>Current carriers</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Interfaces</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>Operating temperature</topic><topic>Semisolids</topic><topic>Solid state</topic><topic>Strain</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chengyao</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Wei, Junjie</creatorcontrib><creatorcontrib>Tan, Rui</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ouyang, Mengzheng</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Cooper, Samuel J.</creatorcontrib><creatorcontrib>Wu, Billy</creatorcontrib><creatorcontrib>George, Chandramohan</creatorcontrib><creatorcontrib>Wang, Qigang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Chengyao</au><au>Liu, Xinhua</au><au>Wei, Junjie</au><au>Tan, Rui</au><au>Zhou, Jie</au><au>Ouyang, Mengzheng</au><au>Wang, Huizhi</au><au>Cooper, Samuel J.</au><au>Wu, Billy</au><au>George, Chandramohan</au><au>Wang, Qigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>15</issue><spage>8826</spage><epage>8831</epage><pages>8826-8831</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm −1 , which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm −2 at a current density of 1.0 mA cm −2 . Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm −2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm −2 .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA01155B</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1415-2377</orcidid><orcidid>https://orcid.org/0000-0002-4026-3337</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2205934690
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Capacitance
Composite materials
Current carriers
Current density
Electrodes
Electrolytes
Energy storage
Interfaces
Ion currents
Ionic liquids
Ions
Mechanical properties
Operating temperature
Semisolids
Solid state
Strain
Supercapacitors
title “All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T08%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CAll-in-Gel%E2%80%9D%20design%20for%20supercapacitors%20towards%20solid-state%20energy%20devices%20with%20thermal%20and%20mechanical%20compliance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yin,%20Chengyao&rft.date=2019&rft.volume=7&rft.issue=15&rft.spage=8826&rft.epage=8831&rft.pages=8826-8831&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA01155B&rft_dat=%3Cproquest_cross%3E2205934690%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2205934690&rft_id=info:pmid/&rfr_iscdi=true