Loading…
“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance
Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53 |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53 |
container_end_page | 8831 |
container_issue | 15 |
container_start_page | 8826 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Yin, Chengyao Liu, Xinhua Wei, Junjie Tan, Rui Zhou, Jie Ouyang, Mengzheng Wang, Huizhi Cooper, Samuel J. Wu, Billy George, Chandramohan Wang, Qigang |
description | Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm
−1
, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm
−2
at a current density of 1.0 mA cm
−2
. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm
−2
over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm
−2
. |
doi_str_mv | 10.1039/C9TA01155B |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205934690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205934690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhhdRsNRefIKAN2E12STbzbEWrULBSz0v6WS2Tdlu1iRr6a0Poi_XJ3Glov9l_h_-mYEvSa4ZvWOUq_upWkwoY1I-nCWDjEqajoXKz_98UVwmoxA2tFdBaa7UIOmOh89JXae2SWdYHw9fxGCwq4ZUzpPQtehBtxpsdD6Q6Hbam0CCq61JQ9QRCTboV_t-68MCBrKzcU3iGv1W10Q3hmwR1rqx0Edw27a2ugG8Si4qXQcc_c5h8vb0uJg-p_PX2ct0Mk-B8yymS9CgTAEKqqXJpKA5z5XgRmvMmKYCpBFK6nGWcwQsKlFINpaGLhkFgSD5MLk53W29e-8wxHLjOt_0L8ush6K4yBXtW7enFngXgseqbL3dar8vGS1_yJb_ZPk3Y-5ulw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205934690</pqid></control><display><type>article</type><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</creator><creatorcontrib>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</creatorcontrib><description>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm
−1
, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm
−2
at a current density of 1.0 mA cm
−2
. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm
−2
over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm
−2
.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA01155B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Composite materials ; Current carriers ; Current density ; Electrodes ; Electrolytes ; Energy storage ; Interfaces ; Ion currents ; Ionic liquids ; Ions ; Mechanical properties ; Operating temperature ; Semisolids ; Solid state ; Strain ; Supercapacitors</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</citedby><cites>FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</cites><orcidid>0000-0002-1415-2377 ; 0000-0002-4026-3337 ; 0000-0003-4055-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,4031,27935,27936,27937</link.rule.ids></links><search><creatorcontrib>Yin, Chengyao</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Wei, Junjie</creatorcontrib><creatorcontrib>Tan, Rui</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ouyang, Mengzheng</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Cooper, Samuel J.</creatorcontrib><creatorcontrib>Wu, Billy</creatorcontrib><creatorcontrib>George, Chandramohan</creatorcontrib><creatorcontrib>Wang, Qigang</creatorcontrib><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm
−1
, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm
−2
at a current density of 1.0 mA cm
−2
. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm
−2
over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm
−2
.</description><subject>Capacitance</subject><subject>Composite materials</subject><subject>Current carriers</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Interfaces</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>Operating temperature</subject><subject>Semisolids</subject><subject>Solid state</subject><subject>Strain</subject><subject>Supercapacitors</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhhdRsNRefIKAN2E12STbzbEWrULBSz0v6WS2Tdlu1iRr6a0Poi_XJ3Glov9l_h_-mYEvSa4ZvWOUq_upWkwoY1I-nCWDjEqajoXKz_98UVwmoxA2tFdBaa7UIOmOh89JXae2SWdYHw9fxGCwq4ZUzpPQtehBtxpsdD6Q6Hbam0CCq61JQ9QRCTboV_t-68MCBrKzcU3iGv1W10Q3hmwR1rqx0Edw27a2ugG8Si4qXQcc_c5h8vb0uJg-p_PX2ct0Mk-B8yymS9CgTAEKqqXJpKA5z5XgRmvMmKYCpBFK6nGWcwQsKlFINpaGLhkFgSD5MLk53W29e-8wxHLjOt_0L8ush6K4yBXtW7enFngXgseqbL3dar8vGS1_yJb_ZPk3Y-5ulw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yin, Chengyao</creator><creator>Liu, Xinhua</creator><creator>Wei, Junjie</creator><creator>Tan, Rui</creator><creator>Zhou, Jie</creator><creator>Ouyang, Mengzheng</creator><creator>Wang, Huizhi</creator><creator>Cooper, Samuel J.</creator><creator>Wu, Billy</creator><creator>George, Chandramohan</creator><creator>Wang, Qigang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1415-2377</orcidid><orcidid>https://orcid.org/0000-0002-4026-3337</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid></search><sort><creationdate>2019</creationdate><title>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</title><author>Yin, Chengyao ; Liu, Xinhua ; Wei, Junjie ; Tan, Rui ; Zhou, Jie ; Ouyang, Mengzheng ; Wang, Huizhi ; Cooper, Samuel J. ; Wu, Billy ; George, Chandramohan ; Wang, Qigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>Composite materials</topic><topic>Current carriers</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Interfaces</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>Operating temperature</topic><topic>Semisolids</topic><topic>Solid state</topic><topic>Strain</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chengyao</creatorcontrib><creatorcontrib>Liu, Xinhua</creatorcontrib><creatorcontrib>Wei, Junjie</creatorcontrib><creatorcontrib>Tan, Rui</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ouyang, Mengzheng</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Cooper, Samuel J.</creatorcontrib><creatorcontrib>Wu, Billy</creatorcontrib><creatorcontrib>George, Chandramohan</creatorcontrib><creatorcontrib>Wang, Qigang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Chengyao</au><au>Liu, Xinhua</au><au>Wei, Junjie</au><au>Tan, Rui</au><au>Zhou, Jie</au><au>Ouyang, Mengzheng</au><au>Wang, Huizhi</au><au>Cooper, Samuel J.</au><au>Wu, Billy</au><au>George, Chandramohan</au><au>Wang, Qigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>15</issue><spage>8826</spage><epage>8831</epage><pages>8826-8831</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm
−1
, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm
−2
at a current density of 1.0 mA cm
−2
. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm
−2
over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm
−2
.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA01155B</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1415-2377</orcidid><orcidid>https://orcid.org/0000-0002-4026-3337</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (15), p.8826-8831 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2205934690 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Capacitance Composite materials Current carriers Current density Electrodes Electrolytes Energy storage Interfaces Ion currents Ionic liquids Ions Mechanical properties Operating temperature Semisolids Solid state Strain Supercapacitors |
title | “All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T08%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CAll-in-Gel%E2%80%9D%20design%20for%20supercapacitors%20towards%20solid-state%20energy%20devices%20with%20thermal%20and%20mechanical%20compliance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yin,%20Chengyao&rft.date=2019&rft.volume=7&rft.issue=15&rft.spage=8826&rft.epage=8831&rft.pages=8826-8831&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA01155B&rft_dat=%3Cproquest_cross%3E2205934690%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-bcac9d8c9cfbd2540636943daae21a04c5d495a7263ece8f485175d0b10c4ec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2205934690&rft_id=info:pmid/&rfr_iscdi=true |