Loading…

Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems

We study echelon-stock ( R , nQ ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and un...

Full description

Saved in:
Bibliographic Details
Published in:Operations research 1998-07, Vol.46 (4), p.592-602
Main Authors: Chen, Fangruo, Zheng, Yu-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23
cites cdi_FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23
container_end_page 602
container_issue 4
container_start_page 592
container_title Operations research
container_volume 46
creator Chen, Fangruo
Zheng, Yu-Sheng
description We study echelon-stock ( R , nQ ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second, we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to the discrete-time case with independent, identically distributed demands.
doi_str_mv 10.1287/opre.46.4.592
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_219177747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>223134</jstor_id><sourcerecordid>223134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23</originalsourceid><addsrcrecordid>eNqFkM9PwjAcxRujiYgePXlZjDGaMOz6kx0NQTFBUdHEW9OVDopjne2I4b-3ONSjp-_hfd57-T4AjhPYTVCPX9nK6S5hXdKlKdoBrYQiFlPC8C5oQYhhjBl52wcH3i8ghClltAWGD1q6eFzVZimLaKDmurBlPKmteo8unjtR-XQZPdrCKKN9ZMroflXUxtdypqOJdiZ4Jmtf66U_BHu5LLw-2t42eL0ZvPSH8Wh8e9e_HsWKQF7HGVSZStJEZT3KNMMZl1MCoURTCCmXaYKZghnvcTpNCUNM50zyjLEezqGWOcJtcNrkVs5-rLSvxcKuXBkqBQq5nHPCAxQ3kHLWe6dzUbnwoFuLBIrNVmKzlSBMEBG2CvzZNlR6JYvcyVIZ_2diFOPv2JMGW_jaul8ZIZxgEtROo5oyt27p_-08b_C5mc0_TZB-fBvO_4FfDEWN0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219177747</pqid></control><display><type>article</type><title>Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Informs</source><source>JSTOR</source><creator>Chen, Fangruo ; Zheng, Yu-Sheng</creator><creatorcontrib>Chen, Fangruo ; Zheng, Yu-Sheng</creatorcontrib><description>We study echelon-stock ( R , nQ ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second, we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to the discrete-time case with independent, identically distributed demands.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.46.4.592</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Applied sciences ; Average cost ; Average total cost ; Carrying costs ; Cost efficiency ; Cost functions ; Determinism ; Exact sciences and technology ; Heuristics ; Integers ; Inventories ; Inventory control, production control. Distribution ; Inventory/production ; Investment policy ; lot-sizing ; multiechelon ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal solutions ; Optimization ; stochastic ; Studies</subject><ispartof>Operations research, 1998-07, Vol.46 (4), p.592-602</ispartof><rights>Copyright 1998 The Institute for Operations Research and the Management Sciences</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23</citedby><cites>FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/223134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.46.4.592$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,783,787,3699,27936,27937,58570,58803,62950</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1653347$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Fangruo</creatorcontrib><creatorcontrib>Zheng, Yu-Sheng</creatorcontrib><title>Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems</title><title>Operations research</title><description>We study echelon-stock ( R , nQ ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second, we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to the discrete-time case with independent, identically distributed demands.</description><subject>Applied sciences</subject><subject>Average cost</subject><subject>Average total cost</subject><subject>Carrying costs</subject><subject>Cost efficiency</subject><subject>Cost functions</subject><subject>Determinism</subject><subject>Exact sciences and technology</subject><subject>Heuristics</subject><subject>Integers</subject><subject>Inventories</subject><subject>Inventory control, production control. Distribution</subject><subject>Inventory/production</subject><subject>Investment policy</subject><subject>lot-sizing</subject><subject>multiechelon</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal solutions</subject><subject>Optimization</subject><subject>stochastic</subject><subject>Studies</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkM9PwjAcxRujiYgePXlZjDGaMOz6kx0NQTFBUdHEW9OVDopjne2I4b-3ONSjp-_hfd57-T4AjhPYTVCPX9nK6S5hXdKlKdoBrYQiFlPC8C5oQYhhjBl52wcH3i8ghClltAWGD1q6eFzVZimLaKDmurBlPKmteo8unjtR-XQZPdrCKKN9ZMroflXUxtdypqOJdiZ4Jmtf66U_BHu5LLw-2t42eL0ZvPSH8Wh8e9e_HsWKQF7HGVSZStJEZT3KNMMZl1MCoURTCCmXaYKZghnvcTpNCUNM50zyjLEezqGWOcJtcNrkVs5-rLSvxcKuXBkqBQq5nHPCAxQ3kHLWe6dzUbnwoFuLBIrNVmKzlSBMEBG2CvzZNlR6JYvcyVIZ_2diFOPv2JMGW_jaul8ZIZxgEtROo5oyt27p_-08b_C5mc0_TZB-fBvO_4FfDEWN0w</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Chen, Fangruo</creator><creator>Zheng, Yu-Sheng</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19980701</creationdate><title>Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems</title><author>Chen, Fangruo ; Zheng, Yu-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Average cost</topic><topic>Average total cost</topic><topic>Carrying costs</topic><topic>Cost efficiency</topic><topic>Cost functions</topic><topic>Determinism</topic><topic>Exact sciences and technology</topic><topic>Heuristics</topic><topic>Integers</topic><topic>Inventories</topic><topic>Inventory control, production control. Distribution</topic><topic>Inventory/production</topic><topic>Investment policy</topic><topic>lot-sizing</topic><topic>multiechelon</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal solutions</topic><topic>Optimization</topic><topic>stochastic</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fangruo</creatorcontrib><creatorcontrib>Zheng, Yu-Sheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fangruo</au><au>Zheng, Yu-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems</atitle><jtitle>Operations research</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>46</volume><issue>4</issue><spage>592</spage><epage>602</epage><pages>592-602</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We study echelon-stock ( R , nQ ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second, we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to the discrete-time case with independent, identically distributed demands.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/opre.46.4.592</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1998-07, Vol.46 (4), p.592-602
issn 0030-364X
1526-5463
language eng
recordid cdi_proquest_journals_219177747
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Informs; JSTOR
subjects Applied sciences
Average cost
Average total cost
Carrying costs
Cost efficiency
Cost functions
Determinism
Exact sciences and technology
Heuristics
Integers
Inventories
Inventory control, production control. Distribution
Inventory/production
Investment policy
lot-sizing
multiechelon
Operational research and scientific management
Operational research. Management science
Operations research
Optimal solutions
Optimization
stochastic
Studies
title Near-Optimal Echelon-Stock (R, nQ) Policies in Multistage Serial Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T12%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Optimal%20Echelon-Stock%20(R,%20nQ)%20Policies%20in%20Multistage%20Serial%20Systems&rft.jtitle=Operations%20research&rft.au=Chen,%20Fangruo&rft.date=1998-07-01&rft.volume=46&rft.issue=4&rft.spage=592&rft.epage=602&rft.pages=592-602&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.46.4.592&rft_dat=%3Cjstor_proqu%3E223134%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-b0cbc191cb856e63b7ad400a2d0057a9136c0b7875d94626ef6a7b6683f0eaf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219177747&rft_id=info:pmid/&rft_jstor_id=223134&rfr_iscdi=true