Loading…

Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE

The interdecadal Pacific Oscillation (IPO) represents the decadal mode of the El Niño-Southern Oscillation phenomenon. As such the IPO is one of the dominant modes of decadal climate variability on both sides of the Pacific Ocean basin. For this paper we utilized a newly developed tree-ring data net...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2019-09, Vol.53 (5-6), p.3181-3196
Main Authors: Buckley, Brendan M., Ummenhofer, C. C., D’Arrigo, R. D., Hansen, K. G., Truong, L. H., Le, C. N., Stahle, D. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13
cites cdi_FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13
container_end_page 3196
container_issue 5-6
container_start_page 3181
container_title Climate dynamics
container_volume 53
creator Buckley, Brendan M.
Ummenhofer, C. C.
D’Arrigo, R. D.
Hansen, K. G.
Truong, L. H.
Le, C. N.
Stahle, D. K.
description The interdecadal Pacific Oscillation (IPO) represents the decadal mode of the El Niño-Southern Oscillation phenomenon. As such the IPO is one of the dominant modes of decadal climate variability on both sides of the Pacific Ocean basin. For this paper we utilized a newly developed tree-ring data network comprised of five multi-centennial Vietnamese cypress ring-width chronologies that range from around 11°N–23°N latitude. We combined these data with an average of tree-ring derived drought indices from the North American Drought Atlas over the south central USA, from a box that spans from 27.5°N–35.0°N, 85.0°–110.0°W and contains 55 gridpoints and more than 100 tree ring site chronologies, these 2 locations exhibit rainfall variations that are strongly, negatively correlated with each other and are representative of the influence of the IPO on terrestrial rainfall. The final reconstruction model, weighted most heavily on the three most southerly of the five Vietnamese cypress records, spans from 1350 to 2004, and explains nearly 57% of the variance in the original IPO data for the 5-month season of October–February. The reconstruction model passes all standard statistical tests using a split calibration-verification scheme. We reveal 15 positive and 15 negative phase shifts of the IPO prior to the period of instrumentation, suggesting that the IPO has been active for at least the past seven centuries with varying degrees of intensity. We compare our reconstruction with two related millennial records: the MacDonald and Case (Geophys Res Lett 32(8):L08703, 2005) tree ring-derived reconstruction of the Pacific Decadal Oscillation, and an ice core-derived reconstruction of the IPO from the Law Dome Ice core in Antarctica by Vance et al. (Geophys Res Lett 33(6):L06712, 2015). While there is good general agreement with the latter record, there are three key periods of the past where the two records are out of phase, and we explore the reasons for this disparity. Direct comparison with the related Tripole Index (TPI) shows weaker correlation, likely owing to the stronger relationship between our tree ring data and the equatorial Pacific region relative to the north and south regions of the Pacific that combine to comprise the TPI calculation.
doi_str_mv 10.1007/s00382-019-04694-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2186927369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597416553</galeid><sourcerecordid>A597416553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMoOO76Ap4aBMFDr5W_3fG2DKs7sLCLf25CSKcrs1l6usckDevNd_ANfRIz24rORXIoUvy-Kr76CHlB4YwCNG8SAG9ZDVTXIJQWtXhEVlTw0mq1eExWoDnUjWzkU_IspTsAKlTDVuTLZswYe3S2t0N1Y13wwVXXyYVhsDlMYxXRTWPKcXYZ-8rHaVflaMdU_4FzRKxiGLfpbUW5hJ_ffzAAUa0vTskTb4eEz3_XE_L53cWn9WV9df1-sz6_qp2kKtecc9oh4w11qDrpWqocoG99T6nqtGzBsUb2VFsObQed8q73wMqPs171lJ-Ql8vcfZy-zpiyuZvmOJaVhtFWadZwpQt1tlBbO6AJo5-KD1dej7tQPKIPpX8udSOokpIXwesjQWEy3uetnVMym48fjtlX_7C3aId8m6ZhPpwwHYNsAV2cUorozT6GnY3fDAVzyNIsWZqSpXnI0ogi4oso7Q-HxvjX4H9UvwAYG57N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186927369</pqid></control><display><type>article</type><title>Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE</title><source>Springer Link</source><creator>Buckley, Brendan M. ; Ummenhofer, C. C. ; D’Arrigo, R. D. ; Hansen, K. G. ; Truong, L. H. ; Le, C. N. ; Stahle, D. K.</creator><creatorcontrib>Buckley, Brendan M. ; Ummenhofer, C. C. ; D’Arrigo, R. D. ; Hansen, K. G. ; Truong, L. H. ; Le, C. N. ; Stahle, D. K.</creatorcontrib><description>The interdecadal Pacific Oscillation (IPO) represents the decadal mode of the El Niño-Southern Oscillation phenomenon. As such the IPO is one of the dominant modes of decadal climate variability on both sides of the Pacific Ocean basin. For this paper we utilized a newly developed tree-ring data network comprised of five multi-centennial Vietnamese cypress ring-width chronologies that range from around 11°N–23°N latitude. We combined these data with an average of tree-ring derived drought indices from the North American Drought Atlas over the south central USA, from a box that spans from 27.5°N–35.0°N, 85.0°–110.0°W and contains 55 gridpoints and more than 100 tree ring site chronologies, these 2 locations exhibit rainfall variations that are strongly, negatively correlated with each other and are representative of the influence of the IPO on terrestrial rainfall. The final reconstruction model, weighted most heavily on the three most southerly of the five Vietnamese cypress records, spans from 1350 to 2004, and explains nearly 57% of the variance in the original IPO data for the 5-month season of October–February. The reconstruction model passes all standard statistical tests using a split calibration-verification scheme. We reveal 15 positive and 15 negative phase shifts of the IPO prior to the period of instrumentation, suggesting that the IPO has been active for at least the past seven centuries with varying degrees of intensity. We compare our reconstruction with two related millennial records: the MacDonald and Case (Geophys Res Lett 32(8):L08703, 2005) tree ring-derived reconstruction of the Pacific Decadal Oscillation, and an ice core-derived reconstruction of the IPO from the Law Dome Ice core in Antarctica by Vance et al. (Geophys Res Lett 33(6):L06712, 2015). While there is good general agreement with the latter record, there are three key periods of the past where the two records are out of phase, and we explore the reasons for this disparity. Direct comparison with the related Tripole Index (TPI) shows weaker correlation, likely owing to the stronger relationship between our tree ring data and the equatorial Pacific region relative to the north and south regions of the Pacific that combine to comprise the TPI calculation.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-019-04694-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calibration ; Climate variability ; Climatology ; Data ; Drought ; Drought index ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; Equatorial regions ; Geophysics/Geodesy ; Ice cores ; Instrumentation ; Mathematical models ; Ocean basins ; Oceanography ; Pacific Decadal Oscillation ; Rain ; Rainfall ; Rainfall variations ; Reconstruction ; Records ; Southern Oscillation ; Statistical analysis ; Statistical tests ; Terrestrial environments ; Tree rings ; Trees</subject><ispartof>Climate dynamics, 2019-09, Vol.53 (5-6), p.3181-3196</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13</citedby><cites>FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13</cites><orcidid>0000-0003-1544-8003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Buckley, Brendan M.</creatorcontrib><creatorcontrib>Ummenhofer, C. C.</creatorcontrib><creatorcontrib>D’Arrigo, R. D.</creatorcontrib><creatorcontrib>Hansen, K. G.</creatorcontrib><creatorcontrib>Truong, L. H.</creatorcontrib><creatorcontrib>Le, C. N.</creatorcontrib><creatorcontrib>Stahle, D. K.</creatorcontrib><title>Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The interdecadal Pacific Oscillation (IPO) represents the decadal mode of the El Niño-Southern Oscillation phenomenon. As such the IPO is one of the dominant modes of decadal climate variability on both sides of the Pacific Ocean basin. For this paper we utilized a newly developed tree-ring data network comprised of five multi-centennial Vietnamese cypress ring-width chronologies that range from around 11°N–23°N latitude. We combined these data with an average of tree-ring derived drought indices from the North American Drought Atlas over the south central USA, from a box that spans from 27.5°N–35.0°N, 85.0°–110.0°W and contains 55 gridpoints and more than 100 tree ring site chronologies, these 2 locations exhibit rainfall variations that are strongly, negatively correlated with each other and are representative of the influence of the IPO on terrestrial rainfall. The final reconstruction model, weighted most heavily on the three most southerly of the five Vietnamese cypress records, spans from 1350 to 2004, and explains nearly 57% of the variance in the original IPO data for the 5-month season of October–February. The reconstruction model passes all standard statistical tests using a split calibration-verification scheme. We reveal 15 positive and 15 negative phase shifts of the IPO prior to the period of instrumentation, suggesting that the IPO has been active for at least the past seven centuries with varying degrees of intensity. We compare our reconstruction with two related millennial records: the MacDonald and Case (Geophys Res Lett 32(8):L08703, 2005) tree ring-derived reconstruction of the Pacific Decadal Oscillation, and an ice core-derived reconstruction of the IPO from the Law Dome Ice core in Antarctica by Vance et al. (Geophys Res Lett 33(6):L06712, 2015). While there is good general agreement with the latter record, there are three key periods of the past where the two records are out of phase, and we explore the reasons for this disparity. Direct comparison with the related Tripole Index (TPI) shows weaker correlation, likely owing to the stronger relationship between our tree ring data and the equatorial Pacific region relative to the north and south regions of the Pacific that combine to comprise the TPI calculation.</description><subject>Calibration</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Data</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Equatorial regions</subject><subject>Geophysics/Geodesy</subject><subject>Ice cores</subject><subject>Instrumentation</subject><subject>Mathematical models</subject><subject>Ocean basins</subject><subject>Oceanography</subject><subject>Pacific Decadal Oscillation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall variations</subject><subject>Reconstruction</subject><subject>Records</subject><subject>Southern Oscillation</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Terrestrial environments</subject><subject>Tree rings</subject><subject>Trees</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc-KFDEQxoMoOO76Ap4aBMFDr5W_3fG2DKs7sLCLf25CSKcrs1l6usckDevNd_ANfRIz24rORXIoUvy-Kr76CHlB4YwCNG8SAG9ZDVTXIJQWtXhEVlTw0mq1eExWoDnUjWzkU_IspTsAKlTDVuTLZswYe3S2t0N1Y13wwVXXyYVhsDlMYxXRTWPKcXYZ-8rHaVflaMdU_4FzRKxiGLfpbUW5hJ_ffzAAUa0vTskTb4eEz3_XE_L53cWn9WV9df1-sz6_qp2kKtecc9oh4w11qDrpWqocoG99T6nqtGzBsUb2VFsObQed8q73wMqPs171lJ-Ql8vcfZy-zpiyuZvmOJaVhtFWadZwpQt1tlBbO6AJo5-KD1dej7tQPKIPpX8udSOokpIXwesjQWEy3uetnVMym48fjtlX_7C3aId8m6ZhPpwwHYNsAV2cUorozT6GnY3fDAVzyNIsWZqSpXnI0ogi4oso7Q-HxvjX4H9UvwAYG57N</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Buckley, Brendan M.</creator><creator>Ummenhofer, C. C.</creator><creator>D’Arrigo, R. D.</creator><creator>Hansen, K. G.</creator><creator>Truong, L. H.</creator><creator>Le, C. N.</creator><creator>Stahle, D. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1544-8003</orcidid></search><sort><creationdate>20190901</creationdate><title>Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE</title><author>Buckley, Brendan M. ; Ummenhofer, C. C. ; D’Arrigo, R. D. ; Hansen, K. G. ; Truong, L. H. ; Le, C. N. ; Stahle, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calibration</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Data</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Equatorial regions</topic><topic>Geophysics/Geodesy</topic><topic>Ice cores</topic><topic>Instrumentation</topic><topic>Mathematical models</topic><topic>Ocean basins</topic><topic>Oceanography</topic><topic>Pacific Decadal Oscillation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall variations</topic><topic>Reconstruction</topic><topic>Records</topic><topic>Southern Oscillation</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Terrestrial environments</topic><topic>Tree rings</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckley, Brendan M.</creatorcontrib><creatorcontrib>Ummenhofer, C. C.</creatorcontrib><creatorcontrib>D’Arrigo, R. D.</creatorcontrib><creatorcontrib>Hansen, K. G.</creatorcontrib><creatorcontrib>Truong, L. H.</creatorcontrib><creatorcontrib>Le, C. N.</creatorcontrib><creatorcontrib>Stahle, D. K.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckley, Brendan M.</au><au>Ummenhofer, C. C.</au><au>D’Arrigo, R. D.</au><au>Hansen, K. G.</au><au>Truong, L. H.</au><au>Le, C. N.</au><au>Stahle, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>53</volume><issue>5-6</issue><spage>3181</spage><epage>3196</epage><pages>3181-3196</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The interdecadal Pacific Oscillation (IPO) represents the decadal mode of the El Niño-Southern Oscillation phenomenon. As such the IPO is one of the dominant modes of decadal climate variability on both sides of the Pacific Ocean basin. For this paper we utilized a newly developed tree-ring data network comprised of five multi-centennial Vietnamese cypress ring-width chronologies that range from around 11°N–23°N latitude. We combined these data with an average of tree-ring derived drought indices from the North American Drought Atlas over the south central USA, from a box that spans from 27.5°N–35.0°N, 85.0°–110.0°W and contains 55 gridpoints and more than 100 tree ring site chronologies, these 2 locations exhibit rainfall variations that are strongly, negatively correlated with each other and are representative of the influence of the IPO on terrestrial rainfall. The final reconstruction model, weighted most heavily on the three most southerly of the five Vietnamese cypress records, spans from 1350 to 2004, and explains nearly 57% of the variance in the original IPO data for the 5-month season of October–February. The reconstruction model passes all standard statistical tests using a split calibration-verification scheme. We reveal 15 positive and 15 negative phase shifts of the IPO prior to the period of instrumentation, suggesting that the IPO has been active for at least the past seven centuries with varying degrees of intensity. We compare our reconstruction with two related millennial records: the MacDonald and Case (Geophys Res Lett 32(8):L08703, 2005) tree ring-derived reconstruction of the Pacific Decadal Oscillation, and an ice core-derived reconstruction of the IPO from the Law Dome Ice core in Antarctica by Vance et al. (Geophys Res Lett 33(6):L06712, 2015). While there is good general agreement with the latter record, there are three key periods of the past where the two records are out of phase, and we explore the reasons for this disparity. Direct comparison with the related Tripole Index (TPI) shows weaker correlation, likely owing to the stronger relationship between our tree ring data and the equatorial Pacific region relative to the north and south regions of the Pacific that combine to comprise the TPI calculation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-019-04694-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1544-8003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2019-09, Vol.53 (5-6), p.3181-3196
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2186927369
source Springer Link
subjects Calibration
Climate variability
Climatology
Data
Drought
Drought index
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
Equatorial regions
Geophysics/Geodesy
Ice cores
Instrumentation
Mathematical models
Ocean basins
Oceanography
Pacific Decadal Oscillation
Rain
Rainfall
Rainfall variations
Reconstruction
Records
Southern Oscillation
Statistical analysis
Statistical tests
Terrestrial environments
Tree rings
Trees
title Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20Pacific%20Oscillation%20reconstructed%20from%20trans-Pacific%20tree%20rings:%201350%E2%80%932004%20CE&rft.jtitle=Climate%20dynamics&rft.au=Buckley,%20Brendan%20M.&rft.date=2019-09-01&rft.volume=53&rft.issue=5-6&rft.spage=3181&rft.epage=3196&rft.pages=3181-3196&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-019-04694-4&rft_dat=%3Cgale_proqu%3EA597416553%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-3331be2371ce6b5c816c0ef8fd116b9580c275d19a308b0b6fcdf02a3032d6d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186927369&rft_id=info:pmid/&rft_galeid=A597416553&rfr_iscdi=true