Loading…

Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry

Effects of wave‐driven Langmuir turbulence on the air‐sea flux of carbon dioxide (CO2) are examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of carbonate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advances in modeling earth systems 2018-12, Vol.10 (12), p.3030-3048
Main Authors: Smith, K. M., Hamlington, P. E., Niemeyer, K. E., Fox‐Kemper, B., Lovenduski, N. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033
cites cdi_FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033
container_end_page 3048
container_issue 12
container_start_page 3030
container_title Journal of advances in modeling earth systems
container_volume 10
creator Smith, K. M.
Hamlington, P. E.
Niemeyer, K. E.
Fox‐Kemper, B.
Lovenduski, N. S.
description Effects of wave‐driven Langmuir turbulence on the air‐sea flux of carbon dioxide (CO2) are examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of carbonate chemistry: time‐dependent chemistry, instantaneous equilibrium chemistry, and no reactions. The time‐dependent model is obtained by reducing a detailed eight‐species chemical mechanism using computational singular perturbation analysis, resulting in a quasi steady state approximation for hydrogen ion (H+); that is, fixed pH. The reduced mechanism is then integrated in two half‐time steps before and after the advection solve using a Runge‐Kutta‐Chebyshev scheme that is robust for stiff systems of differential equations. The simulations show that as the strength of Langmuir turbulence increases, CO2 fluxes are enhanced by rapid overturning of the near‐surface layer, which rivals the removal rate of CO2 by time‐dependent reactions. Equilibrium chemistry and nonreactive models are found to bring more and less carbon, respectively, into the ocean as compared to the more realistic time‐dependent model. These results have implications for Earth system models that either neglect Langmuir turbulence or use equilibrium, instead of time‐dependent, chemical mechanisms. Key Points Detailed carbonate chemistry is solved in large eddy simulations of upper ocean turbulence Langmuir turbulence increases the air‐sea flux of CO2, resulting in increased dissolved inorganic carbon Equilibrium chemistry leads to overpredicted fluxes of CO2 into the upper ocean
doi_str_mv 10.1029/2018MS001486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167013391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167013391</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpbPwAS6wE7mzHdsYqKl9K1YF2thzXgVRtEuxEqP-eoDJ0YrrT6dF70kvILcIDAsseGaBevAOg0PKMTDATLGFCyvOT_ZJcxbgFkFKydEJm86ryro-0rWhhm4_9UAe6GkI57HzjPG0buu46H-jSedvQ3IaybWzvaf7p93Xsw-GaXFR2F_3N35yS9dN8lb8kxfL5NZ8ViRWIMsmYZtyhzywHJVKJTHFdahAOFduUXIq0BFBebBhzFWKaCpUKqSHT4xk4n5K7Y24X2q_Bx95s2yE040vDUCpAzjMc1f1RudDGGHxlulDvbTgYBPNbkjktaeT8yL_rnT_8a83bbDFnoDLJfwDGNGSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167013391</pqid></control><display><type>article</type><title>Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Smith, K. M. ; Hamlington, P. E. ; Niemeyer, K. E. ; Fox‐Kemper, B. ; Lovenduski, N. S.</creator><creatorcontrib>Smith, K. M. ; Hamlington, P. E. ; Niemeyer, K. E. ; Fox‐Kemper, B. ; Lovenduski, N. S.</creatorcontrib><description>Effects of wave‐driven Langmuir turbulence on the air‐sea flux of carbon dioxide (CO2) are examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of carbonate chemistry: time‐dependent chemistry, instantaneous equilibrium chemistry, and no reactions. The time‐dependent model is obtained by reducing a detailed eight‐species chemical mechanism using computational singular perturbation analysis, resulting in a quasi steady state approximation for hydrogen ion (H+); that is, fixed pH. The reduced mechanism is then integrated in two half‐time steps before and after the advection solve using a Runge‐Kutta‐Chebyshev scheme that is robust for stiff systems of differential equations. The simulations show that as the strength of Langmuir turbulence increases, CO2 fluxes are enhanced by rapid overturning of the near‐surface layer, which rivals the removal rate of CO2 by time‐dependent reactions. Equilibrium chemistry and nonreactive models are found to bring more and less carbon, respectively, into the ocean as compared to the more realistic time‐dependent model. These results have implications for Earth system models that either neglect Langmuir turbulence or use equilibrium, instead of time‐dependent, chemical mechanisms. Key Points Detailed carbonate chemistry is solved in large eddy simulations of upper ocean turbulence Langmuir turbulence increases the air‐sea flux of CO2, resulting in increased dissolved inorganic carbon Equilibrium chemistry leads to overpredicted fluxes of CO2 into the upper ocean</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1029/2018MS001486</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; Air-sea flux ; Approximation ; Carbon dioxide ; Carbon dioxide flux ; Carbonates ; Chemistry ; Differential equations ; Earth ; Equilibrium ; Hydrogen ; Hydrogen ions ; Large eddy simulations ; Mixed layer ; Ocean mixed layer ; Oceanic turbulence ; Oceans ; Removal ; Surface boundary layer ; Surface layers ; Temperature (air-sea) ; Turbulence ; Upper ocean</subject><ispartof>Journal of advances in modeling earth systems, 2018-12, Vol.10 (12), p.3030-3048</ispartof><rights>2018. The Authors.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033</citedby><cites>FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033</cites><orcidid>0000-0003-0189-9372 ; 0000-0002-2871-2048 ; 0000-0001-5893-1009 ; 0000-0002-1603-7727 ; 0000-0003-4425-7097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2167013391/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2167013391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,11589,25783,27957,27958,37047,44625,46087,46511,75483</link.rule.ids></links><search><creatorcontrib>Smith, K. M.</creatorcontrib><creatorcontrib>Hamlington, P. E.</creatorcontrib><creatorcontrib>Niemeyer, K. E.</creatorcontrib><creatorcontrib>Fox‐Kemper, B.</creatorcontrib><creatorcontrib>Lovenduski, N. S.</creatorcontrib><title>Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry</title><title>Journal of advances in modeling earth systems</title><description>Effects of wave‐driven Langmuir turbulence on the air‐sea flux of carbon dioxide (CO2) are examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of carbonate chemistry: time‐dependent chemistry, instantaneous equilibrium chemistry, and no reactions. The time‐dependent model is obtained by reducing a detailed eight‐species chemical mechanism using computational singular perturbation analysis, resulting in a quasi steady state approximation for hydrogen ion (H+); that is, fixed pH. The reduced mechanism is then integrated in two half‐time steps before and after the advection solve using a Runge‐Kutta‐Chebyshev scheme that is robust for stiff systems of differential equations. The simulations show that as the strength of Langmuir turbulence increases, CO2 fluxes are enhanced by rapid overturning of the near‐surface layer, which rivals the removal rate of CO2 by time‐dependent reactions. Equilibrium chemistry and nonreactive models are found to bring more and less carbon, respectively, into the ocean as compared to the more realistic time‐dependent model. These results have implications for Earth system models that either neglect Langmuir turbulence or use equilibrium, instead of time‐dependent, chemical mechanisms. Key Points Detailed carbonate chemistry is solved in large eddy simulations of upper ocean turbulence Langmuir turbulence increases the air‐sea flux of CO2, resulting in increased dissolved inorganic carbon Equilibrium chemistry leads to overpredicted fluxes of CO2 into the upper ocean</description><subject>Advection</subject><subject>Air-sea flux</subject><subject>Approximation</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Differential equations</subject><subject>Earth</subject><subject>Equilibrium</subject><subject>Hydrogen</subject><subject>Hydrogen ions</subject><subject>Large eddy simulations</subject><subject>Mixed layer</subject><subject>Ocean mixed layer</subject><subject>Oceanic turbulence</subject><subject>Oceans</subject><subject>Removal</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Temperature (air-sea)</subject><subject>Turbulence</subject><subject>Upper ocean</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>PIMPY</sourceid><recordid>eNp90D1PwzAQBmALgUQpbPwAS6wE7mzHdsYqKl9K1YF2thzXgVRtEuxEqP-eoDJ0YrrT6dF70kvILcIDAsseGaBevAOg0PKMTDATLGFCyvOT_ZJcxbgFkFKydEJm86ryro-0rWhhm4_9UAe6GkI57HzjPG0buu46H-jSedvQ3IaybWzvaf7p93Xsw-GaXFR2F_3N35yS9dN8lb8kxfL5NZ8ViRWIMsmYZtyhzywHJVKJTHFdahAOFduUXIq0BFBebBhzFWKaCpUKqSHT4xk4n5K7Y24X2q_Bx95s2yE040vDUCpAzjMc1f1RudDGGHxlulDvbTgYBPNbkjktaeT8yL_rnT_8a83bbDFnoDLJfwDGNGSE</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Smith, K. M.</creator><creator>Hamlington, P. E.</creator><creator>Niemeyer, K. E.</creator><creator>Fox‐Kemper, B.</creator><creator>Lovenduski, N. S.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0189-9372</orcidid><orcidid>https://orcid.org/0000-0002-2871-2048</orcidid><orcidid>https://orcid.org/0000-0001-5893-1009</orcidid><orcidid>https://orcid.org/0000-0002-1603-7727</orcidid><orcidid>https://orcid.org/0000-0003-4425-7097</orcidid></search><sort><creationdate>201812</creationdate><title>Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry</title><author>Smith, K. M. ; Hamlington, P. E. ; Niemeyer, K. E. ; Fox‐Kemper, B. ; Lovenduski, N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Air-sea flux</topic><topic>Approximation</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Differential equations</topic><topic>Earth</topic><topic>Equilibrium</topic><topic>Hydrogen</topic><topic>Hydrogen ions</topic><topic>Large eddy simulations</topic><topic>Mixed layer</topic><topic>Ocean mixed layer</topic><topic>Oceanic turbulence</topic><topic>Oceans</topic><topic>Removal</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Temperature (air-sea)</topic><topic>Turbulence</topic><topic>Upper ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, K. M.</creatorcontrib><creatorcontrib>Hamlington, P. E.</creatorcontrib><creatorcontrib>Niemeyer, K. E.</creatorcontrib><creatorcontrib>Fox‐Kemper, B.</creatorcontrib><creatorcontrib>Lovenduski, N. S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, K. M.</au><au>Hamlington, P. E.</au><au>Niemeyer, K. E.</au><au>Fox‐Kemper, B.</au><au>Lovenduski, N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2018-12</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>3030</spage><epage>3048</epage><pages>3030-3048</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>Effects of wave‐driven Langmuir turbulence on the air‐sea flux of carbon dioxide (CO2) are examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of carbonate chemistry: time‐dependent chemistry, instantaneous equilibrium chemistry, and no reactions. The time‐dependent model is obtained by reducing a detailed eight‐species chemical mechanism using computational singular perturbation analysis, resulting in a quasi steady state approximation for hydrogen ion (H+); that is, fixed pH. The reduced mechanism is then integrated in two half‐time steps before and after the advection solve using a Runge‐Kutta‐Chebyshev scheme that is robust for stiff systems of differential equations. The simulations show that as the strength of Langmuir turbulence increases, CO2 fluxes are enhanced by rapid overturning of the near‐surface layer, which rivals the removal rate of CO2 by time‐dependent reactions. Equilibrium chemistry and nonreactive models are found to bring more and less carbon, respectively, into the ocean as compared to the more realistic time‐dependent model. These results have implications for Earth system models that either neglect Langmuir turbulence or use equilibrium, instead of time‐dependent, chemical mechanisms. Key Points Detailed carbonate chemistry is solved in large eddy simulations of upper ocean turbulence Langmuir turbulence increases the air‐sea flux of CO2, resulting in increased dissolved inorganic carbon Equilibrium chemistry leads to overpredicted fluxes of CO2 into the upper ocean</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018MS001486</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0189-9372</orcidid><orcidid>https://orcid.org/0000-0002-2871-2048</orcidid><orcidid>https://orcid.org/0000-0001-5893-1009</orcidid><orcidid>https://orcid.org/0000-0002-1603-7727</orcidid><orcidid>https://orcid.org/0000-0003-4425-7097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-2466
ispartof Journal of advances in modeling earth systems, 2018-12, Vol.10 (12), p.3030-3048
issn 1942-2466
1942-2466
language eng
recordid cdi_proquest_journals_2167013391
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Advection
Air-sea flux
Approximation
Carbon dioxide
Carbon dioxide flux
Carbonates
Chemistry
Differential equations
Earth
Equilibrium
Hydrogen
Hydrogen ions
Large eddy simulations
Mixed layer
Ocean mixed layer
Oceanic turbulence
Oceans
Removal
Surface boundary layer
Surface layers
Temperature (air-sea)
Turbulence
Upper ocean
title Effects of Langmuir Turbulence on Upper Ocean Carbonate Chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Langmuir%20Turbulence%20on%20Upper%20Ocean%20Carbonate%20Chemistry&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Smith,%20K.%20M.&rft.date=2018-12&rft.volume=10&rft.issue=12&rft.spage=3030&rft.epage=3048&rft.pages=3030-3048&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1029/2018MS001486&rft_dat=%3Cproquest_cross%3E2167013391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4116-92823c1e9a30745612738b804c172db3645b007e4d22cf1155475468098007033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167013391&rft_id=info:pmid/&rfr_iscdi=true