Loading…

Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units

Understanding the fundamental reactions and mechanisms during biomass fast pyrolysis is essential for the development of efficient pyrolysis techniques. In this work, quantum chemistry calculation, kinetic analysis and fast pyrolysis experiment were combined to reveal the cellulose pyrolysis mechani...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2018-12, Vol.198, p.267-277
Main Authors: Lu, Qiang, Hu, Bin, Zhang, Zhen-xi, Wu, Yu-ting, Cui, Min-shu, Liu, Ding-jia, Dong, Chang-qing, Yang, Yong-ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393
cites cdi_FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393
container_end_page 277
container_issue
container_start_page 267
container_title Combustion and flame
container_volume 198
creator Lu, Qiang
Hu, Bin
Zhang, Zhen-xi
Wu, Yu-ting
Cui, Min-shu
Liu, Ding-jia
Dong, Chang-qing
Yang, Yong-ping
description Understanding the fundamental reactions and mechanisms during biomass fast pyrolysis is essential for the development of efficient pyrolysis techniques. In this work, quantum chemistry calculation, kinetic analysis and fast pyrolysis experiment were combined to reveal the cellulose pyrolysis mechanism. During cellulose pyrolysis, the indigenous interior units, reducing end (RE end) and non-reducing end (NR end) initially form various characteristic chain ends and dehydrated units which then evolve into different pyrolytic products. As the rising of the degree of polymerization (DP), reactions occurring at the interior unit and NR end are more competitive than those taking place at the RE end, resulting in distinct pyrolytic product distribution for cellulose and glucose-based carbohydrates. The reactions occurring at the three indigenous units of cellulose chain all favor the formation of levoglucosan-terminated end (LG end) and/or NR end, which then generate levoglucosan (LG). The acyclic d-glucose end (AG end), which mainly derives from the RE end, is essential for the formation of 1,6-anhydro-β-d-glucofuranose (AGF), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), furfural (FF), 5-hydroxymethyl furfural (5-HMF) and hydroxyacetaldehyde (HAA). Compared with the chain ends, the dehydrated units are not feasible to be generated, and their decomposition favors the formation of HAA.
doi_str_mv 10.1016/j.combustflame.2018.09.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155090671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001021801830422X</els_id><sourcerecordid>2155090671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxDxasE8ZO6tTsEG8JxAbW1sQeq67SpNgOUv-elLJgyWp0pfvQHMYuBJQChLpalXZYt2PKvsM1lRLEogRdgpwfsJmYz1UhtRSHbAYgoJBiAcfsJKUVADR1Vc0YvpJdYh_Smg-eW-q6sRsScY8p8802Dt02hXTN35fEJ0E_riVGtJliSDnYnQw9p94ljr3jjpZbFzGT42MfcjpjRx67ROe_95R9PNy_3z4VL2-Pz7c3L4WttMiFdhIrVNrqqm6hrluUoNBLkhKbhrxTVknrpZSN9UoANou6VWQJ2oXDSlen7HLfu4nD50gpm9Uwxn6aNHIiARpUIybX9d5l45BSJG82Mawxbo0As0NqVuYvUrNDakCbCekUvtuHafrjK1A0yQbqLbkQyWbjhvCfmm_ZgYgr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155090671</pqid></control><display><type>article</type><title>Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lu, Qiang ; Hu, Bin ; Zhang, Zhen-xi ; Wu, Yu-ting ; Cui, Min-shu ; Liu, Ding-jia ; Dong, Chang-qing ; Yang, Yong-ping</creator><creatorcontrib>Lu, Qiang ; Hu, Bin ; Zhang, Zhen-xi ; Wu, Yu-ting ; Cui, Min-shu ; Liu, Ding-jia ; Dong, Chang-qing ; Yang, Yong-ping</creatorcontrib><description>Understanding the fundamental reactions and mechanisms during biomass fast pyrolysis is essential for the development of efficient pyrolysis techniques. In this work, quantum chemistry calculation, kinetic analysis and fast pyrolysis experiment were combined to reveal the cellulose pyrolysis mechanism. During cellulose pyrolysis, the indigenous interior units, reducing end (RE end) and non-reducing end (NR end) initially form various characteristic chain ends and dehydrated units which then evolve into different pyrolytic products. As the rising of the degree of polymerization (DP), reactions occurring at the interior unit and NR end are more competitive than those taking place at the RE end, resulting in distinct pyrolytic product distribution for cellulose and glucose-based carbohydrates. The reactions occurring at the three indigenous units of cellulose chain all favor the formation of levoglucosan-terminated end (LG end) and/or NR end, which then generate levoglucosan (LG). The acyclic d-glucose end (AG end), which mainly derives from the RE end, is essential for the formation of 1,6-anhydro-β-d-glucofuranose (AGF), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), furfural (FF), 5-hydroxymethyl furfural (5-HMF) and hydroxyacetaldehyde (HAA). Compared with the chain ends, the dehydrated units are not feasible to be generated, and their decomposition favors the formation of HAA.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2018.09.025</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Carbohydrates ; Cellulose ; Characteristic chain end ; Degree of polymerization ; Dehydrated unit ; Dehydration ; DFT ; Emissions ; Enzyme kinetics ; Enzymes ; Fast pyrolysis ; Fluidized bed combustion ; Glucose ; Hydroxymethylfurfural ; Mechanism ; Organic chemistry ; Pyrolysis ; Quantum chemistry</subject><ispartof>Combustion and flame, 2018-12, Vol.198, p.267-277</ispartof><rights>2018 The Combustion Institute</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393</citedby><cites>FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393</cites><orcidid>0000-0002-4340-1803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhen-xi</creatorcontrib><creatorcontrib>Wu, Yu-ting</creatorcontrib><creatorcontrib>Cui, Min-shu</creatorcontrib><creatorcontrib>Liu, Ding-jia</creatorcontrib><creatorcontrib>Dong, Chang-qing</creatorcontrib><creatorcontrib>Yang, Yong-ping</creatorcontrib><title>Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units</title><title>Combustion and flame</title><description>Understanding the fundamental reactions and mechanisms during biomass fast pyrolysis is essential for the development of efficient pyrolysis techniques. In this work, quantum chemistry calculation, kinetic analysis and fast pyrolysis experiment were combined to reveal the cellulose pyrolysis mechanism. During cellulose pyrolysis, the indigenous interior units, reducing end (RE end) and non-reducing end (NR end) initially form various characteristic chain ends and dehydrated units which then evolve into different pyrolytic products. As the rising of the degree of polymerization (DP), reactions occurring at the interior unit and NR end are more competitive than those taking place at the RE end, resulting in distinct pyrolytic product distribution for cellulose and glucose-based carbohydrates. The reactions occurring at the three indigenous units of cellulose chain all favor the formation of levoglucosan-terminated end (LG end) and/or NR end, which then generate levoglucosan (LG). The acyclic d-glucose end (AG end), which mainly derives from the RE end, is essential for the formation of 1,6-anhydro-β-d-glucofuranose (AGF), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), furfural (FF), 5-hydroxymethyl furfural (5-HMF) and hydroxyacetaldehyde (HAA). Compared with the chain ends, the dehydrated units are not feasible to be generated, and their decomposition favors the formation of HAA.</description><subject>Carbohydrates</subject><subject>Cellulose</subject><subject>Characteristic chain end</subject><subject>Degree of polymerization</subject><subject>Dehydrated unit</subject><subject>Dehydration</subject><subject>DFT</subject><subject>Emissions</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Fast pyrolysis</subject><subject>Fluidized bed combustion</subject><subject>Glucose</subject><subject>Hydroxymethylfurfural</subject><subject>Mechanism</subject><subject>Organic chemistry</subject><subject>Pyrolysis</subject><subject>Quantum chemistry</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxDxasE8ZO6tTsEG8JxAbW1sQeq67SpNgOUv-elLJgyWp0pfvQHMYuBJQChLpalXZYt2PKvsM1lRLEogRdgpwfsJmYz1UhtRSHbAYgoJBiAcfsJKUVADR1Vc0YvpJdYh_Smg-eW-q6sRsScY8p8802Dt02hXTN35fEJ0E_riVGtJliSDnYnQw9p94ljr3jjpZbFzGT42MfcjpjRx67ROe_95R9PNy_3z4VL2-Pz7c3L4WttMiFdhIrVNrqqm6hrluUoNBLkhKbhrxTVknrpZSN9UoANou6VWQJ2oXDSlen7HLfu4nD50gpm9Uwxn6aNHIiARpUIybX9d5l45BSJG82Mawxbo0As0NqVuYvUrNDakCbCekUvtuHafrjK1A0yQbqLbkQyWbjhvCfmm_ZgYgr</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lu, Qiang</creator><creator>Hu, Bin</creator><creator>Zhang, Zhen-xi</creator><creator>Wu, Yu-ting</creator><creator>Cui, Min-shu</creator><creator>Liu, Ding-jia</creator><creator>Dong, Chang-qing</creator><creator>Yang, Yong-ping</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4340-1803</orcidid></search><sort><creationdate>20181201</creationdate><title>Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units</title><author>Lu, Qiang ; Hu, Bin ; Zhang, Zhen-xi ; Wu, Yu-ting ; Cui, Min-shu ; Liu, Ding-jia ; Dong, Chang-qing ; Yang, Yong-ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbohydrates</topic><topic>Cellulose</topic><topic>Characteristic chain end</topic><topic>Degree of polymerization</topic><topic>Dehydrated unit</topic><topic>Dehydration</topic><topic>DFT</topic><topic>Emissions</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Fast pyrolysis</topic><topic>Fluidized bed combustion</topic><topic>Glucose</topic><topic>Hydroxymethylfurfural</topic><topic>Mechanism</topic><topic>Organic chemistry</topic><topic>Pyrolysis</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhen-xi</creatorcontrib><creatorcontrib>Wu, Yu-ting</creatorcontrib><creatorcontrib>Cui, Min-shu</creatorcontrib><creatorcontrib>Liu, Ding-jia</creatorcontrib><creatorcontrib>Dong, Chang-qing</creatorcontrib><creatorcontrib>Yang, Yong-ping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qiang</au><au>Hu, Bin</au><au>Zhang, Zhen-xi</au><au>Wu, Yu-ting</au><au>Cui, Min-shu</au><au>Liu, Ding-jia</au><au>Dong, Chang-qing</au><au>Yang, Yong-ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units</atitle><jtitle>Combustion and flame</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>198</volume><spage>267</spage><epage>277</epage><pages>267-277</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Understanding the fundamental reactions and mechanisms during biomass fast pyrolysis is essential for the development of efficient pyrolysis techniques. In this work, quantum chemistry calculation, kinetic analysis and fast pyrolysis experiment were combined to reveal the cellulose pyrolysis mechanism. During cellulose pyrolysis, the indigenous interior units, reducing end (RE end) and non-reducing end (NR end) initially form various characteristic chain ends and dehydrated units which then evolve into different pyrolytic products. As the rising of the degree of polymerization (DP), reactions occurring at the interior unit and NR end are more competitive than those taking place at the RE end, resulting in distinct pyrolytic product distribution for cellulose and glucose-based carbohydrates. The reactions occurring at the three indigenous units of cellulose chain all favor the formation of levoglucosan-terminated end (LG end) and/or NR end, which then generate levoglucosan (LG). The acyclic d-glucose end (AG end), which mainly derives from the RE end, is essential for the formation of 1,6-anhydro-β-d-glucofuranose (AGF), 1,4:3,6-dianhydro-α-d-glucopyranose (DGP), furfural (FF), 5-hydroxymethyl furfural (5-HMF) and hydroxyacetaldehyde (HAA). Compared with the chain ends, the dehydrated units are not feasible to be generated, and their decomposition favors the formation of HAA.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2018.09.025</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4340-1803</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2018-12, Vol.198, p.267-277
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2155090671
source ScienceDirect Freedom Collection 2022-2024
subjects Carbohydrates
Cellulose
Characteristic chain end
Degree of polymerization
Dehydrated unit
Dehydration
DFT
Emissions
Enzyme kinetics
Enzymes
Fast pyrolysis
Fluidized bed combustion
Glucose
Hydroxymethylfurfural
Mechanism
Organic chemistry
Pyrolysis
Quantum chemistry
title Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T21%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20cellulose%20fast%20pyrolysis:%20The%20role%20of%20characteristic%20chain%20ends%20and%20dehydrated%20units&rft.jtitle=Combustion%20and%20flame&rft.au=Lu,%20Qiang&rft.date=2018-12-01&rft.volume=198&rft.spage=267&rft.epage=277&rft.pages=267-277&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2018.09.025&rft_dat=%3Cproquest_cross%3E2155090671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-9d2a3a69c934b044ba206af2e22a77efd6c62cf2227cf610a784b6ece0b8da393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2155090671&rft_id=info:pmid/&rfr_iscdi=true