Loading…

Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility

Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels wit...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2019-01, Vol.221 (1), p.459-469
Main Authors: Bönnighausen, Jakob, Schauer, Nicolas, Schäfer, Wilhelm, Bormann, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3
cites cdi_FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3
container_end_page 469
container_issue 1
container_start_page 459
container_title The New phytologist
container_volume 221
creator Bönnighausen, Jakob
Schauer, Nicolas
Schäfer, Wilhelm
Bormann, Jörg
description Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient Δtri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tricarbonic acid (TCA) cycle and c-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the Δtri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.
doi_str_mv 10.1111/nph.15377
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2139007079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90026802</jstor_id><sourcerecordid>90026802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi1ERZfCgQcAWeLUQ9pxnDjOEVW0RWoLB5C4RbYz7nqVtYOdtOQE78Ab8iS43bY35uI5fPPN-CfkDYMjluvYj-sjVvOmeUZWrBJtIRlvnpMVQCkLUYnv--RlShsAaGtRviD7HEBWjMkV-XWJk9JhcIaOMVg3OH9Ng6W3a1QTjcqsXaI-9Eidt2gmFzzVCz2dk4pu3tLrqLbOo4q5__v7D-3RhP7O0WP4uXh3owb0YSh6HNH36Cea5mRwnJzOu6blFdmzakj4-uE9IN9OP349OS8uPp99OvlwUZiKQVMYqRlvSw5CCa65ASO5NC3WllegsVGgKyGw0Va1VtoKZM1MqZDXAAjC8APyfufNv_wxY5q6TZijzyu7MpsBGmjaTB3uKBNDShFtN0a3VXHpGHR3UXc56u4-6sy-ezDOeov9E_mYbQaOd8CtG3D5v6m7-nL-qHy7m9ikKcSniXxdKSSU_B-L5ZVD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139007079</pqid></control><display><type>article</type><title>Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility</title><source>Wiley-Blackwell Journals</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bönnighausen, Jakob ; Schauer, Nicolas ; Schäfer, Wilhelm ; Bormann, Jörg</creator><creatorcontrib>Bönnighausen, Jakob ; Schauer, Nicolas ; Schäfer, Wilhelm ; Bormann, Jörg</creatorcontrib><description>Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient Δtri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tricarbonic acid (TCA) cycle and c-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the Δtri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15377</identifier><identifier>PMID: 30084118</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Agricultural production ; Alcohols ; Amino acids ; Amino Acids - metabolism ; Apoptosis ; Blight ; Carbohydrates ; Carbonic acid ; Cell death ; Cell Wall - metabolism ; Cell walls ; Colonization ; Crop yield ; Decoding ; Deficient mutant ; Deoxynivalenol ; Food production ; Fusarium ; Fusarium - genetics ; Fusarium - metabolism ; Fusarium - pathogenicity ; Fusarium graminearum ; Fusarium head blight ; gamma-Aminobutyric Acid - metabolism ; Host-Pathogen Interactions - physiology ; Infections ; Jasmonic acid ; Metabolism ; Metabolites ; Metabolome ; Mutation ; mycotoxin ; Mycotoxins ; Mycotoxins - metabolism ; Nodes ; pathogenicity ; plant defense ; Plant Diseases - microbiology ; rachis node ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Sugar ; Sugar Alcohols - metabolism ; Trichothecenes - metabolism ; Triticum - metabolism ; Triticum - microbiology ; virulence ; Wheat ; γ-Aminobutyric acid</subject><ispartof>The New phytologist, 2019-01, Vol.221 (1), p.459-469</ispartof><rights>2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2018 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3</citedby><cites>FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3</cites><orcidid>0000-0002-3493-2450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.15377$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.15377$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30084118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bönnighausen, Jakob</creatorcontrib><creatorcontrib>Schauer, Nicolas</creatorcontrib><creatorcontrib>Schäfer, Wilhelm</creatorcontrib><creatorcontrib>Bormann, Jörg</creatorcontrib><title>Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient Δtri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tricarbonic acid (TCA) cycle and c-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the Δtri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.</description><subject>Agricultural production</subject><subject>Alcohols</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Apoptosis</subject><subject>Blight</subject><subject>Carbohydrates</subject><subject>Carbonic acid</subject><subject>Cell death</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Colonization</subject><subject>Crop yield</subject><subject>Decoding</subject><subject>Deficient mutant</subject><subject>Deoxynivalenol</subject><subject>Food production</subject><subject>Fusarium</subject><subject>Fusarium - genetics</subject><subject>Fusarium - metabolism</subject><subject>Fusarium - pathogenicity</subject><subject>Fusarium graminearum</subject><subject>Fusarium head blight</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Infections</subject><subject>Jasmonic acid</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Mutation</subject><subject>mycotoxin</subject><subject>Mycotoxins</subject><subject>Mycotoxins - metabolism</subject><subject>Nodes</subject><subject>pathogenicity</subject><subject>plant defense</subject><subject>Plant Diseases - microbiology</subject><subject>rachis node</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Sugar</subject><subject>Sugar Alcohols - metabolism</subject><subject>Trichothecenes - metabolism</subject><subject>Triticum - metabolism</subject><subject>Triticum - microbiology</subject><subject>virulence</subject><subject>Wheat</subject><subject>γ-Aminobutyric acid</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAQhi1ERZfCgQcAWeLUQ9pxnDjOEVW0RWoLB5C4RbYz7nqVtYOdtOQE78Ab8iS43bY35uI5fPPN-CfkDYMjluvYj-sjVvOmeUZWrBJtIRlvnpMVQCkLUYnv--RlShsAaGtRviD7HEBWjMkV-XWJk9JhcIaOMVg3OH9Ng6W3a1QTjcqsXaI-9Eidt2gmFzzVCz2dk4pu3tLrqLbOo4q5__v7D-3RhP7O0WP4uXh3owb0YSh6HNH36Cea5mRwnJzOu6blFdmzakj4-uE9IN9OP349OS8uPp99OvlwUZiKQVMYqRlvSw5CCa65ASO5NC3WllegsVGgKyGw0Va1VtoKZM1MqZDXAAjC8APyfufNv_wxY5q6TZijzyu7MpsBGmjaTB3uKBNDShFtN0a3VXHpGHR3UXc56u4-6sy-ezDOeov9E_mYbQaOd8CtG3D5v6m7-nL-qHy7m9ikKcSniXxdKSSU_B-L5ZVD</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bönnighausen, Jakob</creator><creator>Schauer, Nicolas</creator><creator>Schäfer, Wilhelm</creator><creator>Bormann, Jörg</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-3493-2450</orcidid></search><sort><creationdate>20190101</creationdate><title>Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility</title><author>Bönnighausen, Jakob ; Schauer, Nicolas ; Schäfer, Wilhelm ; Bormann, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural production</topic><topic>Alcohols</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Apoptosis</topic><topic>Blight</topic><topic>Carbohydrates</topic><topic>Carbonic acid</topic><topic>Cell death</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Colonization</topic><topic>Crop yield</topic><topic>Decoding</topic><topic>Deficient mutant</topic><topic>Deoxynivalenol</topic><topic>Food production</topic><topic>Fusarium</topic><topic>Fusarium - genetics</topic><topic>Fusarium - metabolism</topic><topic>Fusarium - pathogenicity</topic><topic>Fusarium graminearum</topic><topic>Fusarium head blight</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Infections</topic><topic>Jasmonic acid</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Mutation</topic><topic>mycotoxin</topic><topic>Mycotoxins</topic><topic>Mycotoxins - metabolism</topic><topic>Nodes</topic><topic>pathogenicity</topic><topic>plant defense</topic><topic>Plant Diseases - microbiology</topic><topic>rachis node</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Sugar</topic><topic>Sugar Alcohols - metabolism</topic><topic>Trichothecenes - metabolism</topic><topic>Triticum - metabolism</topic><topic>Triticum - microbiology</topic><topic>virulence</topic><topic>Wheat</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bönnighausen, Jakob</creatorcontrib><creatorcontrib>Schauer, Nicolas</creatorcontrib><creatorcontrib>Schäfer, Wilhelm</creatorcontrib><creatorcontrib>Bormann, Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bönnighausen, Jakob</au><au>Schauer, Nicolas</au><au>Schäfer, Wilhelm</au><au>Bormann, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>221</volume><issue>1</issue><spage>459</spage><epage>469</epage><pages>459-469</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient Δtri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tricarbonic acid (TCA) cycle and c-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the Δtri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>30084118</pmid><doi>10.1111/nph.15377</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3493-2450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-01, Vol.221 (1), p.459-469
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_journals_2139007079
source Wiley-Blackwell Journals; JSTOR Archival Journals and Primary Sources Collection
subjects Agricultural production
Alcohols
Amino acids
Amino Acids - metabolism
Apoptosis
Blight
Carbohydrates
Carbonic acid
Cell death
Cell Wall - metabolism
Cell walls
Colonization
Crop yield
Decoding
Deficient mutant
Deoxynivalenol
Food production
Fusarium
Fusarium - genetics
Fusarium - metabolism
Fusarium - pathogenicity
Fusarium graminearum
Fusarium head blight
gamma-Aminobutyric Acid - metabolism
Host-Pathogen Interactions - physiology
Infections
Jasmonic acid
Metabolism
Metabolites
Metabolome
Mutation
mycotoxin
Mycotoxins
Mycotoxins - metabolism
Nodes
pathogenicity
plant defense
Plant Diseases - microbiology
rachis node
Reactive oxygen species
Reactive Oxygen Species - metabolism
Sugar
Sugar Alcohols - metabolism
Trichothecenes - metabolism
Triticum - metabolism
Triticum - microbiology
virulence
Wheat
γ-Aminobutyric acid
title Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T20%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20profiling%20of%20wheat%20rachis%20node%20infection%20by%20Fusarium%20graminearum%20%E2%80%93%20decoding%20deoxynivalenol-dependent%20susceptibility&rft.jtitle=The%20New%20phytologist&rft.au=B%C3%B6nnighausen,%20Jakob&rft.date=2019-01-01&rft.volume=221&rft.issue=1&rft.spage=459&rft.epage=469&rft.pages=459-469&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15377&rft_dat=%3Cjstor_proqu%3E90026802%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4107-c8b1392306a63b3c0c838c9e5f340be7a0b466e7bfa9f8f40851c2ae3500e06c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2139007079&rft_id=info:pmid/30084118&rft_jstor_id=90026802&rfr_iscdi=true