Loading…

Barcoding chemical modifications into nucleic acids improves drug stability in vivo

The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2018-11, Vol.6 (44), p.7197-723
Main Authors: Sago, Cory D, Kalathoor, Sujay, Fitzgerald, Jordan P, Lando, Gwyneth N, Djeddar, Naima, Bryksin, Anton V, Dahlman, James E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3
cites cdi_FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3
container_end_page 723
container_issue 44
container_start_page 7197
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 6
creator Sago, Cory D
Kalathoor, Sujay
Fitzgerald, Jordan P
Lando, Gwyneth N
Djeddar, Naima
Bryksin, Anton V
Dahlman, James E
description The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo ; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs. The efficacy of nucleic acid therapies can be limited by unwanted degradation.
doi_str_mv 10.1039/c8tb01642a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2133233548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133233548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3</originalsourceid><addsrcrecordid>eNp90clLJDEUB-AwKKOol7mPlMxFhNaksl8EbdxA8KDC3EK2aiNVlTapavC_n2hrj3owlyzv4_HCD4BfCB4iiOWRFYOBiJFa_wCbNaRwwikSa6sz_LsBdnJ-hGUJxAQmP8EGhpRSJvkmuD3VyUYX-lllH3wXrG6rrtybchpC7HMV-iFW_WhbH2ylbXDlqZunuPC5cmmcVXnQJrRheC60WoRF3AbrjW6z33nbt8D9-dnd9HJyfXNxNT25nlhCyTDRlEFJjEOSs8YRCg2S1nDZQFZz20hDkLOcOsk5x45KimoiEGHSSG680HgLHC_7zkfTeWd9PyTdqnkKnU7PKuqgPlf68KBmcaFYjQWvaWmw_9YgxafR50F1IVvftrr3ccyqRpQzSqAUhf75Qh_jmPryvaIwrjGm5EUdLJVNMefkm9UwCKqXuNRU3J2-xnVS8O7H8Vf0PZwC9pYgZbuq_s9bzV1TzO_vDP4HDxulkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133233548</pqid></control><display><type>article</type><title>Barcoding chemical modifications into nucleic acids improves drug stability in vivo</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Sago, Cory D ; Kalathoor, Sujay ; Fitzgerald, Jordan P ; Lando, Gwyneth N ; Djeddar, Naima ; Bryksin, Anton V ; Dahlman, James E</creator><creatorcontrib>Sago, Cory D ; Kalathoor, Sujay ; Fitzgerald, Jordan P ; Lando, Gwyneth N ; Djeddar, Naima ; Bryksin, Anton V ; Dahlman, James E</creatorcontrib><description>The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo ; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs. The efficacy of nucleic acid therapies can be limited by unwanted degradation.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c8tb01642a</identifier><identifier>PMID: 30555697</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acids ; Bar codes ; Biomaterials ; Biomedical materials ; Chemical modification ; Chemistry ; Combinatorial analysis ; Deoxyribonucleic acid ; DNA ; Gene sequencing ; In vivo methods and tests ; Nucleic acids ; Optimization ; Organic chemistry ; Stability</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2018-11, Vol.6 (44), p.7197-723</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3</citedby><cites>FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3</cites><orcidid>0000-0001-7580-436X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30555697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sago, Cory D</creatorcontrib><creatorcontrib>Kalathoor, Sujay</creatorcontrib><creatorcontrib>Fitzgerald, Jordan P</creatorcontrib><creatorcontrib>Lando, Gwyneth N</creatorcontrib><creatorcontrib>Djeddar, Naima</creatorcontrib><creatorcontrib>Bryksin, Anton V</creatorcontrib><creatorcontrib>Dahlman, James E</creatorcontrib><title>Barcoding chemical modifications into nucleic acids improves drug stability in vivo</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo ; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs. The efficacy of nucleic acid therapies can be limited by unwanted degradation.</description><subject>Acids</subject><subject>Bar codes</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemical modification</subject><subject>Chemistry</subject><subject>Combinatorial analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene sequencing</subject><subject>In vivo methods and tests</subject><subject>Nucleic acids</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Stability</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90clLJDEUB-AwKKOol7mPlMxFhNaksl8EbdxA8KDC3EK2aiNVlTapavC_n2hrj3owlyzv4_HCD4BfCB4iiOWRFYOBiJFa_wCbNaRwwikSa6sz_LsBdnJ-hGUJxAQmP8EGhpRSJvkmuD3VyUYX-lllH3wXrG6rrtybchpC7HMV-iFW_WhbH2ylbXDlqZunuPC5cmmcVXnQJrRheC60WoRF3AbrjW6z33nbt8D9-dnd9HJyfXNxNT25nlhCyTDRlEFJjEOSs8YRCg2S1nDZQFZz20hDkLOcOsk5x45KimoiEGHSSG680HgLHC_7zkfTeWd9PyTdqnkKnU7PKuqgPlf68KBmcaFYjQWvaWmw_9YgxafR50F1IVvftrr3ccyqRpQzSqAUhf75Qh_jmPryvaIwrjGm5EUdLJVNMefkm9UwCKqXuNRU3J2-xnVS8O7H8Vf0PZwC9pYgZbuq_s9bzV1TzO_vDP4HDxulkA</recordid><startdate>20181128</startdate><enddate>20181128</enddate><creator>Sago, Cory D</creator><creator>Kalathoor, Sujay</creator><creator>Fitzgerald, Jordan P</creator><creator>Lando, Gwyneth N</creator><creator>Djeddar, Naima</creator><creator>Bryksin, Anton V</creator><creator>Dahlman, James E</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7580-436X</orcidid></search><sort><creationdate>20181128</creationdate><title>Barcoding chemical modifications into nucleic acids improves drug stability in vivo</title><author>Sago, Cory D ; Kalathoor, Sujay ; Fitzgerald, Jordan P ; Lando, Gwyneth N ; Djeddar, Naima ; Bryksin, Anton V ; Dahlman, James E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Bar codes</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemical modification</topic><topic>Chemistry</topic><topic>Combinatorial analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene sequencing</topic><topic>In vivo methods and tests</topic><topic>Nucleic acids</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sago, Cory D</creatorcontrib><creatorcontrib>Kalathoor, Sujay</creatorcontrib><creatorcontrib>Fitzgerald, Jordan P</creatorcontrib><creatorcontrib>Lando, Gwyneth N</creatorcontrib><creatorcontrib>Djeddar, Naima</creatorcontrib><creatorcontrib>Bryksin, Anton V</creatorcontrib><creatorcontrib>Dahlman, James E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sago, Cory D</au><au>Kalathoor, Sujay</au><au>Fitzgerald, Jordan P</au><au>Lando, Gwyneth N</au><au>Djeddar, Naima</au><au>Bryksin, Anton V</au><au>Dahlman, James E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Barcoding chemical modifications into nucleic acids improves drug stability in vivo</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2018-11-28</date><risdate>2018</risdate><volume>6</volume><issue>44</issue><spage>7197</spage><epage>723</epage><pages>7197-723</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo ; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs. The efficacy of nucleic acid therapies can be limited by unwanted degradation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30555697</pmid><doi>10.1039/c8tb01642a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7580-436X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2018-11, Vol.6 (44), p.7197-723
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_journals_2133233548
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Acids
Bar codes
Biomaterials
Biomedical materials
Chemical modification
Chemistry
Combinatorial analysis
Deoxyribonucleic acid
DNA
Gene sequencing
In vivo methods and tests
Nucleic acids
Optimization
Organic chemistry
Stability
title Barcoding chemical modifications into nucleic acids improves drug stability in vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T12%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Barcoding%20chemical%20modifications%20into%20nucleic%20acids%20improves%20drug%20stability%20in%20vivo&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Sago,%20Cory%20D&rft.date=2018-11-28&rft.volume=6&rft.issue=44&rft.spage=7197&rft.epage=723&rft.pages=7197-723&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c8tb01642a&rft_dat=%3Cproquest_pubme%3E2133233548%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-a56094bd1976fd450b19cb79f0627cf9b41dc75d97773d59512481469b97be8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2133233548&rft_id=info:pmid/30555697&rfr_iscdi=true