Loading…

Improved electrochemical performance of Zn–air secondary batteries via novel organic additives

In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chinese Chemical Society (Taipei) 2018-10, Vol.65 (10), p.1239-1244
Main Authors: Huang, Mao‐Chia, Huang, Shih‐Hsuan, Chiu, Sheng‐Cheng, Hsueh, Kan‐Lin, Chang, Wen‐Sheng, Yang, Chang‐Chung, Wu, Ching‐Chen, Lin, Jing‐Chie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83
cites cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83
container_end_page 1244
container_issue 10
container_start_page 1239
container_title Journal of the Chinese Chemical Society (Taipei)
container_volume 65
creator Huang, Mao‐Chia
Huang, Shih‐Hsuan
Chiu, Sheng‐Cheng
Hsueh, Kan‐Lin
Chang, Wen‐Sheng
Yang, Chang‐Chung
Wu, Ching‐Chen
Lin, Jing‐Chie
description In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA > Tween 20 > tartaric acid > blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA > Tween 20 = tartaric acid > blank. In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.
doi_str_mv 10.1002/jccs.201700445
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120553569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120553569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2YyceUcRPUSUGYGEJrnMNrvJT7LSoG-_AG_IkpCqCkeku3znnnkPIKYMJA-DnC2vjhAPLANJU7pERZ5onSqZ6n4wAQCepFOqQHMW4GBDBpR6R52mzDN0aK4o12j509hUbb01NlxhcFxrTWqSdo0_t18en8YFGtF1bmbChc9P3GDxGuvaGtoNLTbvwYlpvqakq3_s1xmNy4Ewd8eTnjsnj1eVDcZPM7q6nxcUssUKmMkkzdLlWTgDPHGiFTnFIreJqztXwaqaFQZZnucy5q5jgXAEoYbkWbA4uF2NytvMd6rytMPbloluFdogsOeMgpZBKD9RkR9nQxRjQlcvgm6FMyaDcrlhuVyx_VxwEeid49zVu_qHL26K4_9N-Axlwdu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120553569</pqid></control><display><type>article</type><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</creator><creatorcontrib>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</creatorcontrib><description>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA &gt; Tween 20 &gt; tartaric acid &gt; blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA &gt; Tween 20 = tartaric acid &gt; blank. In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</description><identifier>ISSN: 0009-4536</identifier><identifier>EISSN: 2192-6549</identifier><identifier>DOI: 10.1002/jccs.201700445</identifier><language>eng</language><publisher>Weinheim: Wiley‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acids ; Additives ; Anodes ; anticorrosion ; Corrosion resistance ; dendrite formation ; Dendritic structure ; Discharge ; Electrochemical analysis ; electrochemical behavior ; Electrode polarization ; Electrolytes ; Ethylenediaminetetraacetic acids ; Linear polarization ; Metal air batteries ; Morphology ; Polyoxyethylene sorbitan monolaurate ; Scanning electron microscopy ; Storage batteries ; Tartaric acid ; Zinc-oxygen batteries ; Zn–air secondary battery</subject><ispartof>Journal of the Chinese Chemical Society (Taipei), 2018-10, Vol.65 (10), p.1239-1244</ispartof><rights>2018 The Chemical Society Located in Taipei &amp; Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</citedby><cites>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Huang, Mao‐Chia</creatorcontrib><creatorcontrib>Huang, Shih‐Hsuan</creatorcontrib><creatorcontrib>Chiu, Sheng‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Kan‐Lin</creatorcontrib><creatorcontrib>Chang, Wen‐Sheng</creatorcontrib><creatorcontrib>Yang, Chang‐Chung</creatorcontrib><creatorcontrib>Wu, Ching‐Chen</creatorcontrib><creatorcontrib>Lin, Jing‐Chie</creatorcontrib><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><title>Journal of the Chinese Chemical Society (Taipei)</title><description>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA &gt; Tween 20 &gt; tartaric acid &gt; blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA &gt; Tween 20 = tartaric acid &gt; blank. In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</description><subject>Acids</subject><subject>Additives</subject><subject>Anodes</subject><subject>anticorrosion</subject><subject>Corrosion resistance</subject><subject>dendrite formation</subject><subject>Dendritic structure</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>electrochemical behavior</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Linear polarization</subject><subject>Metal air batteries</subject><subject>Morphology</subject><subject>Polyoxyethylene sorbitan monolaurate</subject><subject>Scanning electron microscopy</subject><subject>Storage batteries</subject><subject>Tartaric acid</subject><subject>Zinc-oxygen batteries</subject><subject>Zn–air secondary battery</subject><issn>0009-4536</issn><issn>2192-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2YyceUcRPUSUGYGEJrnMNrvJT7LSoG-_AG_IkpCqCkeku3znnnkPIKYMJA-DnC2vjhAPLANJU7pERZ5onSqZ6n4wAQCepFOqQHMW4GBDBpR6R52mzDN0aK4o12j509hUbb01NlxhcFxrTWqSdo0_t18en8YFGtF1bmbChc9P3GDxGuvaGtoNLTbvwYlpvqakq3_s1xmNy4Ewd8eTnjsnj1eVDcZPM7q6nxcUssUKmMkkzdLlWTgDPHGiFTnFIreJqztXwaqaFQZZnucy5q5jgXAEoYbkWbA4uF2NytvMd6rytMPbloluFdogsOeMgpZBKD9RkR9nQxRjQlcvgm6FMyaDcrlhuVyx_VxwEeid49zVu_qHL26K4_9N-Axlwdu8</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Huang, Mao‐Chia</creator><creator>Huang, Shih‐Hsuan</creator><creator>Chiu, Sheng‐Cheng</creator><creator>Hsueh, Kan‐Lin</creator><creator>Chang, Wen‐Sheng</creator><creator>Yang, Chang‐Chung</creator><creator>Wu, Ching‐Chen</creator><creator>Lin, Jing‐Chie</creator><general>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201810</creationdate><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><author>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Additives</topic><topic>Anodes</topic><topic>anticorrosion</topic><topic>Corrosion resistance</topic><topic>dendrite formation</topic><topic>Dendritic structure</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>electrochemical behavior</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Linear polarization</topic><topic>Metal air batteries</topic><topic>Morphology</topic><topic>Polyoxyethylene sorbitan monolaurate</topic><topic>Scanning electron microscopy</topic><topic>Storage batteries</topic><topic>Tartaric acid</topic><topic>Zinc-oxygen batteries</topic><topic>Zn–air secondary battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mao‐Chia</creatorcontrib><creatorcontrib>Huang, Shih‐Hsuan</creatorcontrib><creatorcontrib>Chiu, Sheng‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Kan‐Lin</creatorcontrib><creatorcontrib>Chang, Wen‐Sheng</creatorcontrib><creatorcontrib>Yang, Chang‐Chung</creatorcontrib><creatorcontrib>Wu, Ching‐Chen</creatorcontrib><creatorcontrib>Lin, Jing‐Chie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mao‐Chia</au><au>Huang, Shih‐Hsuan</au><au>Chiu, Sheng‐Cheng</au><au>Hsueh, Kan‐Lin</au><au>Chang, Wen‐Sheng</au><au>Yang, Chang‐Chung</au><au>Wu, Ching‐Chen</au><au>Lin, Jing‐Chie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</atitle><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>1239</spage><epage>1244</epage><pages>1239-1244</pages><issn>0009-4536</issn><eissn>2192-6549</eissn><abstract>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA &gt; Tween 20 &gt; tartaric acid &gt; blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA &gt; Tween 20 = tartaric acid &gt; blank. In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</abstract><cop>Weinheim</cop><pub>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/jccs.201700445</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-4536
ispartof Journal of the Chinese Chemical Society (Taipei), 2018-10, Vol.65 (10), p.1239-1244
issn 0009-4536
2192-6549
language eng
recordid cdi_proquest_journals_2120553569
source Wiley-Blackwell Read & Publish Collection
subjects Acids
Additives
Anodes
anticorrosion
Corrosion resistance
dendrite formation
Dendritic structure
Discharge
Electrochemical analysis
electrochemical behavior
Electrode polarization
Electrolytes
Ethylenediaminetetraacetic acids
Linear polarization
Metal air batteries
Morphology
Polyoxyethylene sorbitan monolaurate
Scanning electron microscopy
Storage batteries
Tartaric acid
Zinc-oxygen batteries
Zn–air secondary battery
title Improved electrochemical performance of Zn–air secondary batteries via novel organic additives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T18%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20electrochemical%20performance%20of%20Zn%E2%80%93air%20secondary%20batteries%20via%20novel%20organic%20additives&rft.jtitle=Journal%20of%20the%20Chinese%20Chemical%20Society%20(Taipei)&rft.au=Huang,%20Mao%E2%80%90Chia&rft.date=2018-10&rft.volume=65&rft.issue=10&rft.spage=1239&rft.epage=1244&rft.pages=1239-1244&rft.issn=0009-4536&rft.eissn=2192-6549&rft_id=info:doi/10.1002/jccs.201700445&rft_dat=%3Cproquest_cross%3E2120553569%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120553569&rft_id=info:pmid/&rfr_iscdi=true