Loading…
Improved electrochemical performance of Zn–air secondary batteries via novel organic additives
In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry...
Saved in:
Published in: | Journal of the Chinese Chemical Society (Taipei) 2018-10, Vol.65 (10), p.1239-1244 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83 |
container_end_page | 1244 |
container_issue | 10 |
container_start_page | 1239 |
container_title | Journal of the Chinese Chemical Society (Taipei) |
container_volume | 65 |
creator | Huang, Mao‐Chia Huang, Shih‐Hsuan Chiu, Sheng‐Cheng Hsueh, Kan‐Lin Chang, Wen‐Sheng Yang, Chang‐Chung Wu, Ching‐Chen Lin, Jing‐Chie |
description | In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA > Tween 20 > tartaric acid > blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA > Tween 20 = tartaric acid > blank.
In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging. |
doi_str_mv | 10.1002/jccs.201700445 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2120553569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120553569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2YyceUcRPUSUGYGEJrnMNrvJT7LSoG-_AG_IkpCqCkeku3znnnkPIKYMJA-DnC2vjhAPLANJU7pERZ5onSqZ6n4wAQCepFOqQHMW4GBDBpR6R52mzDN0aK4o12j509hUbb01NlxhcFxrTWqSdo0_t18en8YFGtF1bmbChc9P3GDxGuvaGtoNLTbvwYlpvqakq3_s1xmNy4Ewd8eTnjsnj1eVDcZPM7q6nxcUssUKmMkkzdLlWTgDPHGiFTnFIreJqztXwaqaFQZZnucy5q5jgXAEoYbkWbA4uF2NytvMd6rytMPbloluFdogsOeMgpZBKD9RkR9nQxRjQlcvgm6FMyaDcrlhuVyx_VxwEeid49zVu_qHL26K4_9N-Axlwdu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120553569</pqid></control><display><type>article</type><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</creator><creatorcontrib>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</creatorcontrib><description>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA > Tween 20 > tartaric acid > blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA > Tween 20 = tartaric acid > blank.
In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</description><identifier>ISSN: 0009-4536</identifier><identifier>EISSN: 2192-6549</identifier><identifier>DOI: 10.1002/jccs.201700445</identifier><language>eng</language><publisher>Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Acids ; Additives ; Anodes ; anticorrosion ; Corrosion resistance ; dendrite formation ; Dendritic structure ; Discharge ; Electrochemical analysis ; electrochemical behavior ; Electrode polarization ; Electrolytes ; Ethylenediaminetetraacetic acids ; Linear polarization ; Metal air batteries ; Morphology ; Polyoxyethylene sorbitan monolaurate ; Scanning electron microscopy ; Storage batteries ; Tartaric acid ; Zinc-oxygen batteries ; Zn–air secondary battery</subject><ispartof>Journal of the Chinese Chemical Society (Taipei), 2018-10, Vol.65 (10), p.1239-1244</ispartof><rights>2018 The Chemical Society Located in Taipei & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</citedby><cites>FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Huang, Mao‐Chia</creatorcontrib><creatorcontrib>Huang, Shih‐Hsuan</creatorcontrib><creatorcontrib>Chiu, Sheng‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Kan‐Lin</creatorcontrib><creatorcontrib>Chang, Wen‐Sheng</creatorcontrib><creatorcontrib>Yang, Chang‐Chung</creatorcontrib><creatorcontrib>Wu, Ching‐Chen</creatorcontrib><creatorcontrib>Lin, Jing‐Chie</creatorcontrib><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><title>Journal of the Chinese Chemical Society (Taipei)</title><description>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA > Tween 20 > tartaric acid > blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA > Tween 20 = tartaric acid > blank.
In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</description><subject>Acids</subject><subject>Additives</subject><subject>Anodes</subject><subject>anticorrosion</subject><subject>Corrosion resistance</subject><subject>dendrite formation</subject><subject>Dendritic structure</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>electrochemical behavior</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Linear polarization</subject><subject>Metal air batteries</subject><subject>Morphology</subject><subject>Polyoxyethylene sorbitan monolaurate</subject><subject>Scanning electron microscopy</subject><subject>Storage batteries</subject><subject>Tartaric acid</subject><subject>Zinc-oxygen batteries</subject><subject>Zn–air secondary battery</subject><issn>0009-4536</issn><issn>2192-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2YyceUcRPUSUGYGEJrnMNrvJT7LSoG-_AG_IkpCqCkeku3znnnkPIKYMJA-DnC2vjhAPLANJU7pERZ5onSqZ6n4wAQCepFOqQHMW4GBDBpR6R52mzDN0aK4o12j509hUbb01NlxhcFxrTWqSdo0_t18en8YFGtF1bmbChc9P3GDxGuvaGtoNLTbvwYlpvqakq3_s1xmNy4Ewd8eTnjsnj1eVDcZPM7q6nxcUssUKmMkkzdLlWTgDPHGiFTnFIreJqztXwaqaFQZZnucy5q5jgXAEoYbkWbA4uF2NytvMd6rytMPbloluFdogsOeMgpZBKD9RkR9nQxRjQlcvgm6FMyaDcrlhuVyx_VxwEeid49zVu_qHL26K4_9N-Axlwdu8</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Huang, Mao‐Chia</creator><creator>Huang, Shih‐Hsuan</creator><creator>Chiu, Sheng‐Cheng</creator><creator>Hsueh, Kan‐Lin</creator><creator>Chang, Wen‐Sheng</creator><creator>Yang, Chang‐Chung</creator><creator>Wu, Ching‐Chen</creator><creator>Lin, Jing‐Chie</creator><general>Wiley‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201810</creationdate><title>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</title><author>Huang, Mao‐Chia ; Huang, Shih‐Hsuan ; Chiu, Sheng‐Cheng ; Hsueh, Kan‐Lin ; Chang, Wen‐Sheng ; Yang, Chang‐Chung ; Wu, Ching‐Chen ; Lin, Jing‐Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Additives</topic><topic>Anodes</topic><topic>anticorrosion</topic><topic>Corrosion resistance</topic><topic>dendrite formation</topic><topic>Dendritic structure</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>electrochemical behavior</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Linear polarization</topic><topic>Metal air batteries</topic><topic>Morphology</topic><topic>Polyoxyethylene sorbitan monolaurate</topic><topic>Scanning electron microscopy</topic><topic>Storage batteries</topic><topic>Tartaric acid</topic><topic>Zinc-oxygen batteries</topic><topic>Zn–air secondary battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mao‐Chia</creatorcontrib><creatorcontrib>Huang, Shih‐Hsuan</creatorcontrib><creatorcontrib>Chiu, Sheng‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Kan‐Lin</creatorcontrib><creatorcontrib>Chang, Wen‐Sheng</creatorcontrib><creatorcontrib>Yang, Chang‐Chung</creatorcontrib><creatorcontrib>Wu, Ching‐Chen</creatorcontrib><creatorcontrib>Lin, Jing‐Chie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mao‐Chia</au><au>Huang, Shih‐Hsuan</au><au>Chiu, Sheng‐Cheng</au><au>Hsueh, Kan‐Lin</au><au>Chang, Wen‐Sheng</au><au>Yang, Chang‐Chung</au><au>Wu, Ching‐Chen</au><au>Lin, Jing‐Chie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved electrochemical performance of Zn–air secondary batteries via novel organic additives</atitle><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>1239</spage><epage>1244</epage><pages>1239-1244</pages><issn>0009-4536</issn><eissn>2192-6549</eissn><abstract>In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes (6.0 M KOH) with various additives, such as ethylenediaminetetraacetic acid (EDTA), polysorbate 20 (Tween 20), and tartaric acid. Data are given as Tafel plots, linear polarizations, cyclic voltammetry measurements, and charge–discharge test results. After the 1000th cycle of charge–discharge measurements, the morphologies of the Zn anodes in electrolytes with various additives were examined by scanning electron microscopy (SEM). The results of linear polarization show that the corrosion resistance was in the order EDTA > Tween 20 > tartaric acid > blank. Based on the SEM images, the prevention of dendrite formation followed the order EDTA > Tween 20 = tartaric acid > blank.
In this study, we report the electrochemical and corrosion behaviors of Zn anodes in electrolytes with various additives, such as ethylenediaminetetraacetic acid (EDTA), Tween 20, and tartaric acid. After the 1000th cycle of charge–discharge measurements, scanning electron microscopy (SEM) images revealed that the electrolyte with 0.1 wt% EDTA effectively prevented the formation of dendrites. In battery performance results, the voltage during charging and discharging fluctuated greatly for the blank, whereas the 0.1 wt% EDTA showed the best stability. Hence 0.1 wt% EDTA can be used in a Zn–air rechargeable battery and can replace existing primary mechanically rechargeable batteries because electrical recharging is easier than mechanical recharging.</abstract><cop>Weinheim</cop><pub>Wiley‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/jccs.201700445</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-4536 |
ispartof | Journal of the Chinese Chemical Society (Taipei), 2018-10, Vol.65 (10), p.1239-1244 |
issn | 0009-4536 2192-6549 |
language | eng |
recordid | cdi_proquest_journals_2120553569 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acids Additives Anodes anticorrosion Corrosion resistance dendrite formation Dendritic structure Discharge Electrochemical analysis electrochemical behavior Electrode polarization Electrolytes Ethylenediaminetetraacetic acids Linear polarization Metal air batteries Morphology Polyoxyethylene sorbitan monolaurate Scanning electron microscopy Storage batteries Tartaric acid Zinc-oxygen batteries Zn–air secondary battery |
title | Improved electrochemical performance of Zn–air secondary batteries via novel organic additives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T18%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20electrochemical%20performance%20of%20Zn%E2%80%93air%20secondary%20batteries%20via%20novel%20organic%20additives&rft.jtitle=Journal%20of%20the%20Chinese%20Chemical%20Society%20(Taipei)&rft.au=Huang,%20Mao%E2%80%90Chia&rft.date=2018-10&rft.volume=65&rft.issue=10&rft.spage=1239&rft.epage=1244&rft.pages=1239-1244&rft.issn=0009-4536&rft.eissn=2192-6549&rft_id=info:doi/10.1002/jccs.201700445&rft_dat=%3Cproquest_cross%3E2120553569%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3545-47ef896f3027f096ef6204c626b26325793ae1878582fd132260063c2931b0f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120553569&rft_id=info:pmid/&rfr_iscdi=true |