Loading…

Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions

A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condi...

Full description

Saved in:
Bibliographic Details
Published in:Central European journal of operations research 2019-06, Vol.27 (2), p.515-532
Main Authors: Orbán-Mihálykó, Éva, Mihálykó, Csaba, Koltay, László
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3
cites cdi_FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3
container_end_page 532
container_issue 2
container_start_page 515
container_title Central European journal of operations research
container_volume 27
creator Orbán-Mihálykó, Éva
Mihálykó, Csaba
Koltay, László
description A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condition is proved for the existence and uniqueness of the maximum likelihood estimation of the parameters in case of incomplete comparisons. The axiomatic properties of the method are also investigated.
doi_str_mv 10.1007/s10100-018-0568-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2075223938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706498975</galeid><sourcerecordid>A706498975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3</originalsourceid><addsrcrecordid>eNp1UU1r3TAQNKWBpkl_QG-CXqtUH5ZlH0No00CglxZ6E7K8chT8pFetXci_7z5caHIoAs1KzIxGTNO8l-JKCmE_oRSEXMieC9P1XL5qzmUnNR-k7V_T3GrDVdv9fNO8RXwUQslBdOdNvsuhHI4LrMCOPlWY2Onsa8KSkaXMgkdgJbLDtqyJiCw8lBSA-TyxGTJUv7ClzDyUHPxvcqll9GNa0vrEJsh4wrjlsCYyvGzOol8Q3v3Fi-bHl8_fb77y-2-3dzfX9zy0xq48xuDBUOTJDL3yfrQdWAi288NkpTKjHlVnxlGqoFs9WNHpdgpKmD5OSgqvL5oPuy-l-bUBru6xbDXTk04Ja5TSg-6JdbWzZr-ASzmWtfpAa4JDov9ATHR_Tfbt0A_WkODjM8G4YcqAtGGaH1ac_Yb4ki53eqgFsUJ0x5oOvj45KdypNrfX5qg2d6rNSdKoXYPEzTPUf8n_L_oDGSybkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075223938</pqid></control><display><type>article</type><title>Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Orbán-Mihálykó, Éva ; Mihálykó, Csaba ; Koltay, László</creator><creatorcontrib>Orbán-Mihálykó, Éva ; Mihálykó, Csaba ; Koltay, László</creatorcontrib><description>A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condition is proved for the existence and uniqueness of the maximum likelihood estimation of the parameters in case of incomplete comparisons. The axiomatic properties of the method are also investigated.</description><identifier>ISSN: 1435-246X</identifier><identifier>EISSN: 1613-9178</identifier><identifier>DOI: 10.1007/s10100-018-0568-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Business and Management ; Decision-making ; Distribution (Probability theory) ; Economic models ; Estimation theory ; Mathematical models ; Maximum likelihood estimates (Statistics) ; Maximum likelihood estimation ; Methods ; Operations research ; Operations Research/Decision Theory ; Original Paper ; Parameter estimation ; Probability density functions ; Random variables</subject><ispartof>Central European journal of operations research, 2019-06, Vol.27 (2), p.515-532</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Central European Journal of Operations Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3</citedby><cites>FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3</cites><orcidid>0000-0002-1948-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2075223938/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2075223938?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,783,787,11700,27936,27937,36072,44375,75229</link.rule.ids></links><search><creatorcontrib>Orbán-Mihálykó, Éva</creatorcontrib><creatorcontrib>Mihálykó, Csaba</creatorcontrib><creatorcontrib>Koltay, László</creatorcontrib><title>Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions</title><title>Central European journal of operations research</title><addtitle>Cent Eur J Oper Res</addtitle><description>A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condition is proved for the existence and uniqueness of the maximum likelihood estimation of the parameters in case of incomplete comparisons. The axiomatic properties of the method are also investigated.</description><subject>Analysis</subject><subject>Business and Management</subject><subject>Decision-making</subject><subject>Distribution (Probability theory)</subject><subject>Economic models</subject><subject>Estimation theory</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimates (Statistics)</subject><subject>Maximum likelihood estimation</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability density functions</subject><subject>Random variables</subject><issn>1435-246X</issn><issn>1613-9178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UU1r3TAQNKWBpkl_QG-CXqtUH5ZlH0No00CglxZ6E7K8chT8pFetXci_7z5caHIoAs1KzIxGTNO8l-JKCmE_oRSEXMieC9P1XL5qzmUnNR-k7V_T3GrDVdv9fNO8RXwUQslBdOdNvsuhHI4LrMCOPlWY2Onsa8KSkaXMgkdgJbLDtqyJiCw8lBSA-TyxGTJUv7ClzDyUHPxvcqll9GNa0vrEJsh4wrjlsCYyvGzOol8Q3v3Fi-bHl8_fb77y-2-3dzfX9zy0xq48xuDBUOTJDL3yfrQdWAi288NkpTKjHlVnxlGqoFs9WNHpdgpKmD5OSgqvL5oPuy-l-bUBru6xbDXTk04Ja5TSg-6JdbWzZr-ASzmWtfpAa4JDov9ATHR_Tfbt0A_WkODjM8G4YcqAtGGaH1ac_Yb4ki53eqgFsUJ0x5oOvj45KdypNrfX5qg2d6rNSdKoXYPEzTPUf8n_L_oDGSybkA</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Orbán-Mihálykó, Éva</creator><creator>Mihálykó, Csaba</creator><creator>Koltay, László</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1948-416X</orcidid></search><sort><creationdate>20190613</creationdate><title>Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions</title><author>Orbán-Mihálykó, Éva ; Mihálykó, Csaba ; Koltay, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Business and Management</topic><topic>Decision-making</topic><topic>Distribution (Probability theory)</topic><topic>Economic models</topic><topic>Estimation theory</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimates (Statistics)</topic><topic>Maximum likelihood estimation</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability density functions</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orbán-Mihálykó, Éva</creatorcontrib><creatorcontrib>Mihálykó, Csaba</creatorcontrib><creatorcontrib>Koltay, László</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orbán-Mihálykó, Éva</au><au>Mihálykó, Csaba</au><au>Koltay, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions</atitle><jtitle>Central European journal of operations research</jtitle><stitle>Cent Eur J Oper Res</stitle><date>2019-06-13</date><risdate>2019</risdate><volume>27</volume><issue>2</issue><spage>515</spage><epage>532</epage><pages>515-532</pages><issn>1435-246X</issn><eissn>1613-9178</eissn><abstract>A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condition is proved for the existence and uniqueness of the maximum likelihood estimation of the parameters in case of incomplete comparisons. The axiomatic properties of the method are also investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10100-018-0568-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1948-416X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-246X
ispartof Central European journal of operations research, 2019-06, Vol.27 (2), p.515-532
issn 1435-246X
1613-9178
language eng
recordid cdi_proquest_journals_2075223938
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Link
subjects Analysis
Business and Management
Decision-making
Distribution (Probability theory)
Economic models
Estimation theory
Mathematical models
Maximum likelihood estimates (Statistics)
Maximum likelihood estimation
Methods
Operations research
Operations Research/Decision Theory
Original Paper
Parameter estimation
Probability density functions
Random variables
title Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T17%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20paired%20comparisons%20in%20case%20of%20multiple%20choice%20and%20general%20log-concave%20probability%20density%20functions&rft.jtitle=Central%20European%20journal%20of%20operations%20research&rft.au=Orb%C3%A1n-Mih%C3%A1lyk%C3%B3,%20%C3%89va&rft.date=2019-06-13&rft.volume=27&rft.issue=2&rft.spage=515&rft.epage=532&rft.pages=515-532&rft.issn=1435-246X&rft.eissn=1613-9178&rft_id=info:doi/10.1007/s10100-018-0568-1&rft_dat=%3Cgale_proqu%3EA706498975%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-ffcae5435d5982aab76e7ec76a9d7125b3b265bb12c343970634dc2058fd210a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075223938&rft_id=info:pmid/&rft_galeid=A706498975&rfr_iscdi=true