Loading…

Experimental investigation of shear-driven water film flows on horizontal metal plate

•Shear-driven water film flowing on a flat Aluminum plate was experimentally studied.•A new correlation of interfacial shear factor was proposed for film thickness prediction.•The superficial roughness was well-correlated by a piecewise linear function of the mean film thickness.•Statistical analysi...

Full description

Saved in:
Bibliographic Details
Published in:Experimental thermal and fluid science 2018-06, Vol.94, p.134-147
Main Authors: Leng, M., Chang, S., Wu, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Shear-driven water film flowing on a flat Aluminum plate was experimentally studied.•A new correlation of interfacial shear factor was proposed for film thickness prediction.•The superficial roughness was well-correlated by a piecewise linear function of the mean film thickness.•Statistical analysis on the variations of interfacial waves was discussed. In this article, an experimental investigation has been conducted to characterize the instantaneous thickness of the surface water film driven by high-speed airflow pertinent to aerodynamic icing and anti-icing modeling. Non-intrusive results of the film flowing on a metal plate were obtained using the high-speed camera and confocal chromatic technique. The wind speed (Ua) ranges from 17.8 m/s to 52.2 m/s, and the film Reynolds number (Ref) ranges from 26 to 128. The effect of the high-speed airflow on the structure of the wave film was observed and analyzed qualitatively. A new correlation of the interfacial shear factor was proposed for the prediction of the average film thickness. The predictions were compared with the previous annular flow models by applying the dimensionless analysis method and a good agreement is achieved. The superficial roughness, characterized by root-mean-square of the thickness, was well-correlated using a piecewise linear function of the average film thickness. Furthermore, a comprehensive description of the superficial waves including spectrum analysis and division of film thickness data between underlying film and large waves was presented. Transformations of the wave frequency and amplitude with the wind speed and the film Reynolds number were also addressed.
ISSN:0894-1777
1879-2286
DOI:10.1016/j.expthermflusci.2018.02.004