Loading…

Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2016-12, Vol.327, p.186-202
Main Authors: Carrillo, José A., Ranetbauer, Helene, Wolfram, Marie-Therese
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593
cites cdi_FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593
container_end_page 202
container_issue
container_start_page 186
container_title Journal of computational physics
container_volume 327
creator Carrillo, José A.
Ranetbauer, Helene
Wolfram, Marie-Therese
description In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.
doi_str_mv 10.1016/j.jcp.2016.09.040
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2046028002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999116304612</els_id><sourcerecordid>2046028002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuC69aTtGkbXMngDQYF0XVI01NNaZOZpB2YtzfjuHaVE_j-c_kIuaaQUaDlbZ_1epOxWGYgMijghCwoCEhZRctTsgBgNBVC0HNyEUIPADUv6gV5f51H9EarIQlmnAc1GWcT1yXW2cFYVD7Rzk7GzmbaJ7idf4GQNPGzc8PO2K-kNV2HbnR-823CGC7JWaeGgFd_75J8Pj58rJ7T9dvTy-p-neqc8SnlWDVClTnr6raqylwwKBnmZdFURa4V5Kzq6ka3yJFyGhEuQKEqlVac51zkS3Jz7LvxbjtjmGTvZm_jSMmgKIHV8ehI0SOlvQvBYyc33ozK7yUFeVAnexnVyYM6CUJGdTFzd8xgXH9n0MugDVqNrfGoJ9k680_6B68kd70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046028002</pqid></control><display><type>article</type><title>Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms</title><source>ScienceDirect Journals</source><creator>Carrillo, José A. ; Ranetbauer, Helene ; Wolfram, Marie-Therese</creator><creatorcontrib>Carrillo, José A. ; Ranetbauer, Helene ; Wolfram, Marie-Therese</creatorcontrib><description>In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2016.09.040</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Computer simulation ; Continuity equation ; Energy ; Gradient flow ; Implicit in time discretization ; Lagrangian coordinates ; Nonlinear equations ; Numerical analysis ; Optimal transport ; Studies ; Variational scheme</subject><ispartof>Journal of computational physics, 2016-12, Vol.327, p.186-202</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593</citedby><cites>FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Carrillo, José A.</creatorcontrib><creatorcontrib>Ranetbauer, Helene</creatorcontrib><creatorcontrib>Wolfram, Marie-Therese</creatorcontrib><title>Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms</title><title>Journal of computational physics</title><description>In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.</description><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Continuity equation</subject><subject>Energy</subject><subject>Gradient flow</subject><subject>Implicit in time discretization</subject><subject>Lagrangian coordinates</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Optimal transport</subject><subject>Studies</subject><subject>Variational scheme</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuC69aTtGkbXMngDQYF0XVI01NNaZOZpB2YtzfjuHaVE_j-c_kIuaaQUaDlbZ_1epOxWGYgMijghCwoCEhZRctTsgBgNBVC0HNyEUIPADUv6gV5f51H9EarIQlmnAc1GWcT1yXW2cFYVD7Rzk7GzmbaJ7idf4GQNPGzc8PO2K-kNV2HbnR-823CGC7JWaeGgFd_75J8Pj58rJ7T9dvTy-p-neqc8SnlWDVClTnr6raqylwwKBnmZdFURa4V5Kzq6ka3yJFyGhEuQKEqlVac51zkS3Jz7LvxbjtjmGTvZm_jSMmgKIHV8ehI0SOlvQvBYyc33ozK7yUFeVAnexnVyYM6CUJGdTFzd8xgXH9n0MugDVqNrfGoJ9k680_6B68kd70</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Carrillo, José A.</creator><creator>Ranetbauer, Helene</creator><creator>Wolfram, Marie-Therese</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161215</creationdate><title>Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms</title><author>Carrillo, José A. ; Ranetbauer, Helene ; Wolfram, Marie-Therese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Continuity equation</topic><topic>Energy</topic><topic>Gradient flow</topic><topic>Implicit in time discretization</topic><topic>Lagrangian coordinates</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Optimal transport</topic><topic>Studies</topic><topic>Variational scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, José A.</creatorcontrib><creatorcontrib>Ranetbauer, Helene</creatorcontrib><creatorcontrib>Wolfram, Marie-Therese</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, José A.</au><au>Ranetbauer, Helene</au><au>Wolfram, Marie-Therese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms</atitle><jtitle>Journal of computational physics</jtitle><date>2016-12-15</date><risdate>2016</risdate><volume>327</volume><spage>186</spage><epage>202</epage><pages>186-202</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2016.09.040</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2016-12, Vol.327, p.186-202
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2046028002
source ScienceDirect Journals
subjects Computational physics
Computer simulation
Continuity equation
Energy
Gradient flow
Implicit in time discretization
Lagrangian coordinates
Nonlinear equations
Numerical analysis
Optimal transport
Studies
Variational scheme
title Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T14%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20nonlinear%20continuity%20equations%20by%20evolving%20diffeomorphisms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Carrillo,%20Jos%C3%A9%20A.&rft.date=2016-12-15&rft.volume=327&rft.spage=186&rft.epage=202&rft.pages=186-202&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2016.09.040&rft_dat=%3Cproquest_cross%3E2046028002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-5e7b9a632f8d776392062e364b743ca0327f8bcde5e151d77590aea6aca553593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046028002&rft_id=info:pmid/&rfr_iscdi=true