Loading…

Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response

[Display omitted] •Etched and un-etched nanocrystalline glass-ceramics were prepared.•Nanocrystalline fluorapatite was formed and identified using XRD.•Comparison between cell response on bioactive and nano-structured surfaces.•Cell viability after 24 h and 48 h was significantly greater on the nano...

Full description

Saved in:
Bibliographic Details
Published in:Materials letters 2018-03, Vol.214, p.268-271
Main Authors: Dunne, C.F., Cooke, G., Keane, S., de Faoite, D., Donnelly, S.C., Stanton, K.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23
cites cdi_FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23
container_end_page 271
container_issue
container_start_page 268
container_title Materials letters
container_volume 214
creator Dunne, C.F.
Cooke, G.
Keane, S.
de Faoite, D.
Donnelly, S.C.
Stanton, K.T.
description [Display omitted] •Etched and un-etched nanocrystalline glass-ceramics were prepared.•Nanocrystalline fluorapatite was formed and identified using XRD.•Comparison between cell response on bioactive and nano-structured surfaces.•Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface. This work investigates the difference in viability of primary human foetal osteoblast cells on a glass-ceramic surface with nanoscale topography relative to viability on a smooth glass-ceramic surface containing a bioactive phase. Apatite-mullite glass-ceramics containing bioactive fluorapatite (Ca10(PO4)6F2) and bioinert mullite (Si2Al6O13) were synthesised and subsequent heat-treatment was optimised to form nano-sized fluorapatite crystals. Etching was used to selectively remove the bioactive phase, producing a surface with disordered nanoscale topography. Cells were seeded onto a smooth polished glass-ceramic substrate with the bioactive phase intact, an etched nanostructured glass-ceramic with the bioactive phase removed, and a borosilicate glass control. Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface compared to the smooth bioactive surface, while cell viability at both time points was significantly greater on both nanostructured and smooth bioactive surfaces compared to the control.
doi_str_mv 10.1016/j.matlet.2017.12.051
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029417049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X17318128</els_id><sourcerecordid>2029417049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxcB161JmjTtRpDBLxh0o-AuJOmr09I2NUkF_70ZZtau7ua8-7gHoWtKckpoedvno44DxJwRKnPKciLoCVrRShYZr2V9ilYJk5mQ8vMcXYTQE0J4TfgK6Vc9uRD9YuPiocF61rGLkI3LMKTEX4MOIbPg9djZgFvnMUw7PdnEzr4btf_Fu2XUE04t4EzCI7YwDNhDmN0U4BKdtXoIcHXMNfp4fHjfPGfbt6eXzf02s0VFYlZqCtxIXhZVTYWt2tJYYQteQCNFUxZAhaCgjSmJYcIQUoMRguuaSQOtZsUa3Rx6Z---FwhR9W7xU3qpGGE1pzJNThQ_UNa7EDy06rhCUaL2MlWvDjLVXqaiTCWZ6ezucAZpwU8HXgXbwd5C58FG1bju_4I_wJyBsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029417049</pqid></control><display><type>article</type><title>Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response</title><source>Elsevier</source><creator>Dunne, C.F. ; Cooke, G. ; Keane, S. ; de Faoite, D. ; Donnelly, S.C. ; Stanton, K.T.</creator><creatorcontrib>Dunne, C.F. ; Cooke, G. ; Keane, S. ; de Faoite, D. ; Donnelly, S.C. ; Stanton, K.T.</creatorcontrib><description>[Display omitted] •Etched and un-etched nanocrystalline glass-ceramics were prepared.•Nanocrystalline fluorapatite was formed and identified using XRD.•Comparison between cell response on bioactive and nano-structured surfaces.•Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface. This work investigates the difference in viability of primary human foetal osteoblast cells on a glass-ceramic surface with nanoscale topography relative to viability on a smooth glass-ceramic surface containing a bioactive phase. Apatite-mullite glass-ceramics containing bioactive fluorapatite (Ca10(PO4)6F2) and bioinert mullite (Si2Al6O13) were synthesised and subsequent heat-treatment was optimised to form nano-sized fluorapatite crystals. Etching was used to selectively remove the bioactive phase, producing a surface with disordered nanoscale topography. Cells were seeded onto a smooth polished glass-ceramic substrate with the bioactive phase intact, an etched nanostructured glass-ceramic with the bioactive phase removed, and a borosilicate glass control. Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface compared to the smooth bioactive surface, while cell viability at both time points was significantly greater on both nanostructured and smooth bioactive surfaces compared to the control.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2017.12.051</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apatite ; Bioceramics ; Biocompatibility ; Biological activity ; Borosilicate glass ; Cell response ; Crystals ; Etching ; Fluorapatite ; Glass ceramics ; Glass substrates ; Glass-ceramic ; Heat treating ; Heat treatment ; Human behavior ; Materials science ; Mullite ; Nanocrystalline materials ; Nanostructure ; Topography</subject><ispartof>Materials letters, 2018-03, Vol.214, p.268-271</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23</citedby><cites>FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Dunne, C.F.</creatorcontrib><creatorcontrib>Cooke, G.</creatorcontrib><creatorcontrib>Keane, S.</creatorcontrib><creatorcontrib>de Faoite, D.</creatorcontrib><creatorcontrib>Donnelly, S.C.</creatorcontrib><creatorcontrib>Stanton, K.T.</creatorcontrib><title>Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response</title><title>Materials letters</title><description>[Display omitted] •Etched and un-etched nanocrystalline glass-ceramics were prepared.•Nanocrystalline fluorapatite was formed and identified using XRD.•Comparison between cell response on bioactive and nano-structured surfaces.•Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface. This work investigates the difference in viability of primary human foetal osteoblast cells on a glass-ceramic surface with nanoscale topography relative to viability on a smooth glass-ceramic surface containing a bioactive phase. Apatite-mullite glass-ceramics containing bioactive fluorapatite (Ca10(PO4)6F2) and bioinert mullite (Si2Al6O13) were synthesised and subsequent heat-treatment was optimised to form nano-sized fluorapatite crystals. Etching was used to selectively remove the bioactive phase, producing a surface with disordered nanoscale topography. Cells were seeded onto a smooth polished glass-ceramic substrate with the bioactive phase intact, an etched nanostructured glass-ceramic with the bioactive phase removed, and a borosilicate glass control. Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface compared to the smooth bioactive surface, while cell viability at both time points was significantly greater on both nanostructured and smooth bioactive surfaces compared to the control.</description><subject>Apatite</subject><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Borosilicate glass</subject><subject>Cell response</subject><subject>Crystals</subject><subject>Etching</subject><subject>Fluorapatite</subject><subject>Glass ceramics</subject><subject>Glass substrates</subject><subject>Glass-ceramic</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Human behavior</subject><subject>Materials science</subject><subject>Mullite</subject><subject>Nanocrystalline materials</subject><subject>Nanostructure</subject><subject>Topography</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxcB161JmjTtRpDBLxh0o-AuJOmr09I2NUkF_70ZZtau7ua8-7gHoWtKckpoedvno44DxJwRKnPKciLoCVrRShYZr2V9ilYJk5mQ8vMcXYTQE0J4TfgK6Vc9uRD9YuPiocF61rGLkI3LMKTEX4MOIbPg9djZgFvnMUw7PdnEzr4btf_Fu2XUE04t4EzCI7YwDNhDmN0U4BKdtXoIcHXMNfp4fHjfPGfbt6eXzf02s0VFYlZqCtxIXhZVTYWt2tJYYQteQCNFUxZAhaCgjSmJYcIQUoMRguuaSQOtZsUa3Rx6Z---FwhR9W7xU3qpGGE1pzJNThQ_UNa7EDy06rhCUaL2MlWvDjLVXqaiTCWZ6ezucAZpwU8HXgXbwd5C58FG1bju_4I_wJyBsg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Dunne, C.F.</creator><creator>Cooke, G.</creator><creator>Keane, S.</creator><creator>de Faoite, D.</creator><creator>Donnelly, S.C.</creator><creator>Stanton, K.T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180301</creationdate><title>Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response</title><author>Dunne, C.F. ; Cooke, G. ; Keane, S. ; de Faoite, D. ; Donnelly, S.C. ; Stanton, K.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apatite</topic><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Borosilicate glass</topic><topic>Cell response</topic><topic>Crystals</topic><topic>Etching</topic><topic>Fluorapatite</topic><topic>Glass ceramics</topic><topic>Glass substrates</topic><topic>Glass-ceramic</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Human behavior</topic><topic>Materials science</topic><topic>Mullite</topic><topic>Nanocrystalline materials</topic><topic>Nanostructure</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunne, C.F.</creatorcontrib><creatorcontrib>Cooke, G.</creatorcontrib><creatorcontrib>Keane, S.</creatorcontrib><creatorcontrib>de Faoite, D.</creatorcontrib><creatorcontrib>Donnelly, S.C.</creatorcontrib><creatorcontrib>Stanton, K.T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunne, C.F.</au><au>Cooke, G.</au><au>Keane, S.</au><au>de Faoite, D.</au><au>Donnelly, S.C.</au><au>Stanton, K.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response</atitle><jtitle>Materials letters</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>214</volume><spage>268</spage><epage>271</epage><pages>268-271</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>[Display omitted] •Etched and un-etched nanocrystalline glass-ceramics were prepared.•Nanocrystalline fluorapatite was formed and identified using XRD.•Comparison between cell response on bioactive and nano-structured surfaces.•Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface. This work investigates the difference in viability of primary human foetal osteoblast cells on a glass-ceramic surface with nanoscale topography relative to viability on a smooth glass-ceramic surface containing a bioactive phase. Apatite-mullite glass-ceramics containing bioactive fluorapatite (Ca10(PO4)6F2) and bioinert mullite (Si2Al6O13) were synthesised and subsequent heat-treatment was optimised to form nano-sized fluorapatite crystals. Etching was used to selectively remove the bioactive phase, producing a surface with disordered nanoscale topography. Cells were seeded onto a smooth polished glass-ceramic substrate with the bioactive phase intact, an etched nanostructured glass-ceramic with the bioactive phase removed, and a borosilicate glass control. Cell viability after 24 h and 48 h was significantly greater on the nanostructured surface compared to the smooth bioactive surface, while cell viability at both time points was significantly greater on both nanostructured and smooth bioactive surfaces compared to the control.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2017.12.051</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2018-03, Vol.214, p.268-271
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2029417049
source Elsevier
subjects Apatite
Bioceramics
Biocompatibility
Biological activity
Borosilicate glass
Cell response
Crystals
Etching
Fluorapatite
Glass ceramics
Glass substrates
Glass-ceramic
Heat treating
Heat treatment
Human behavior
Materials science
Mullite
Nanocrystalline materials
Nanostructure
Topography
title Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T11%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20apatite-mullite%20glass-ceramics%20for%20enhanced%20primary%20human%20osteoblast%20cell%20response&rft.jtitle=Materials%20letters&rft.au=Dunne,%20C.F.&rft.date=2018-03-01&rft.volume=214&rft.spage=268&rft.epage=271&rft.pages=268-271&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2017.12.051&rft_dat=%3Cproquest_cross%3E2029417049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-6a1e4b74638915c8f6bc5c343ed75d63e1551eabb60b25b009eb554a927befa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2029417049&rft_id=info:pmid/&rfr_iscdi=true