Loading…
Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells
Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functiona...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2017-09, Vol.77 (18), p.5142-5157 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473 |
container_end_page | 5157 |
container_issue | 18 |
container_start_page | 5142 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 77 |
creator | Borriello, Lucia Nakata, Rie Sheard, Michael A Fernandez, G Esteban Sposto, Richard Malvar, Jemily Blavier, Laurence Shimada, Hiroyuki Asgharzadeh, Shahab Seeger, Robert C DeClerck, Yves A |
description | Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced
neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs
and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity.
. |
doi_str_mv | 10.1158/0008-5472.CAN-16-2586 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983254865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983254865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobk7_BCXgc2fTfDR9HMWpMD9g-hzS9NZl9GMmqbL_3pZNX-7hXs45F34IXZN4TgiXd3Ecy4izNJnni5eIiCjhUpygKeFURilj_BRN_z0TdOH9dlg5ifk5miRSyFQkZIraXLcGXLTwvjNWByjx0hauK2rtg8frjXaA82FqE8BZH6zxWLclfnNd6JvO2U9orcELE-y3DXv8Y8MGP4OH1mz2ja7xOrhu1Bzq2l-is0rXHq6OOkMfy_v3_DFavT485YtVZJiUIRIAccKrIqNplrFClsyYjANURVlow2KiqUkgo6LQtMyqSgDlIIYTUEhTltIZuj307lz31YMPatv1rh1eKpJJmnAmBR9c_OAyrvPeQaV2zjba7RWJ1UhZjQTVSFANlBURaqQ85G6O7X3RQPmf-sNKfwEq1HsN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983254865</pqid></control><display><type>article</type><title>Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells</title><source>EZB Electronic Journals Library</source><creator>Borriello, Lucia ; Nakata, Rie ; Sheard, Michael A ; Fernandez, G Esteban ; Sposto, Richard ; Malvar, Jemily ; Blavier, Laurence ; Shimada, Hiroyuki ; Asgharzadeh, Shahab ; Seeger, Robert C ; DeClerck, Yves A</creator><creatorcontrib>Borriello, Lucia ; Nakata, Rie ; Sheard, Michael A ; Fernandez, G Esteban ; Sposto, Richard ; Malvar, Jemily ; Blavier, Laurence ; Shimada, Hiroyuki ; Asgharzadeh, Shahab ; Seeger, Robert C ; DeClerck, Yves A</creatorcontrib><description>Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced
neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs
and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity.
.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-16-2586</identifier><identifier>PMID: 28687621</identifier><language>eng</language><publisher>United States: American Association for Cancer Research, Inc</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Biomarkers, Tumor - metabolism ; Bone marrow ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Bone Marrow Cells - pathology ; Bone tumors ; Cancer ; Cancer-Associated Fibroblasts - drug effects ; Cancer-Associated Fibroblasts - metabolism ; Cancer-Associated Fibroblasts - pathology ; Cell Differentiation - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell survival ; Chemotherapy ; Culture Media, Conditioned - pharmacology ; Etoposide ; Female ; Fibroblasts ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Immune system ; Immunodeficiency ; Janus kinase 2 ; Janus Kinase 2 - metabolism ; Macrophages ; Male ; MAP Kinase Kinase 1 - metabolism ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - metabolism ; Mesenchymal Stromal Cells - pathology ; Mesenchyme ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Neuroblastoma ; Neuroblastoma - drug therapy ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Neuroblasts ; Pyrazoles - pharmacology ; Pyridones - pharmacology ; Pyrimidinones - pharmacology ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Stromal cells ; Tumor Cells, Cultured ; Tumor Microenvironment - drug effects ; Tumors ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cancer research (Chicago, Ill.), 2017-09, Vol.77 (18), p.5142-5157</ispartof><rights>2017 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research, Inc. Sep 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473</citedby><cites>FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28687621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borriello, Lucia</creatorcontrib><creatorcontrib>Nakata, Rie</creatorcontrib><creatorcontrib>Sheard, Michael A</creatorcontrib><creatorcontrib>Fernandez, G Esteban</creatorcontrib><creatorcontrib>Sposto, Richard</creatorcontrib><creatorcontrib>Malvar, Jemily</creatorcontrib><creatorcontrib>Blavier, Laurence</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Asgharzadeh, Shahab</creatorcontrib><creatorcontrib>Seeger, Robert C</creatorcontrib><creatorcontrib>DeClerck, Yves A</creatorcontrib><title>Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced
neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs
and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity.
.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Cells - pathology</subject><subject>Bone tumors</subject><subject>Cancer</subject><subject>Cancer-Associated Fibroblasts - drug effects</subject><subject>Cancer-Associated Fibroblasts - metabolism</subject><subject>Cancer-Associated Fibroblasts - pathology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell survival</subject><subject>Chemotherapy</subject><subject>Culture Media, Conditioned - pharmacology</subject><subject>Etoposide</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunodeficiency</subject><subject>Janus kinase 2</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Macrophages</subject><subject>Male</subject><subject>MAP Kinase Kinase 1 - metabolism</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchymal Stromal Cells - pathology</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroblasts</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyridones - pharmacology</subject><subject>Pyrimidinones - pharmacology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stromal cells</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMobk7_BCXgc2fTfDR9HMWpMD9g-hzS9NZl9GMmqbL_3pZNX-7hXs45F34IXZN4TgiXd3Ecy4izNJnni5eIiCjhUpygKeFURilj_BRN_z0TdOH9dlg5ifk5miRSyFQkZIraXLcGXLTwvjNWByjx0hauK2rtg8frjXaA82FqE8BZH6zxWLclfnNd6JvO2U9orcELE-y3DXv8Y8MGP4OH1mz2ja7xOrhu1Bzq2l-is0rXHq6OOkMfy_v3_DFavT485YtVZJiUIRIAccKrIqNplrFClsyYjANURVlow2KiqUkgo6LQtMyqSgDlIIYTUEhTltIZuj307lz31YMPatv1rh1eKpJJmnAmBR9c_OAyrvPeQaV2zjba7RWJ1UhZjQTVSFANlBURaqQ85G6O7X3RQPmf-sNKfwEq1HsN</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Borriello, Lucia</creator><creator>Nakata, Rie</creator><creator>Sheard, Michael A</creator><creator>Fernandez, G Esteban</creator><creator>Sposto, Richard</creator><creator>Malvar, Jemily</creator><creator>Blavier, Laurence</creator><creator>Shimada, Hiroyuki</creator><creator>Asgharzadeh, Shahab</creator><creator>Seeger, Robert C</creator><creator>DeClerck, Yves A</creator><general>American Association for Cancer Research, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20170915</creationdate><title>Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells</title><author>Borriello, Lucia ; Nakata, Rie ; Sheard, Michael A ; Fernandez, G Esteban ; Sposto, Richard ; Malvar, Jemily ; Blavier, Laurence ; Shimada, Hiroyuki ; Asgharzadeh, Shahab ; Seeger, Robert C ; DeClerck, Yves A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Cells - pathology</topic><topic>Bone tumors</topic><topic>Cancer</topic><topic>Cancer-Associated Fibroblasts - drug effects</topic><topic>Cancer-Associated Fibroblasts - metabolism</topic><topic>Cancer-Associated Fibroblasts - pathology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell survival</topic><topic>Chemotherapy</topic><topic>Culture Media, Conditioned - pharmacology</topic><topic>Etoposide</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunodeficiency</topic><topic>Janus kinase 2</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Macrophages</topic><topic>Male</topic><topic>MAP Kinase Kinase 1 - metabolism</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchymal Stromal Cells - pathology</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroblasts</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyridones - pharmacology</topic><topic>Pyrimidinones - pharmacology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stromal cells</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borriello, Lucia</creatorcontrib><creatorcontrib>Nakata, Rie</creatorcontrib><creatorcontrib>Sheard, Michael A</creatorcontrib><creatorcontrib>Fernandez, G Esteban</creatorcontrib><creatorcontrib>Sposto, Richard</creatorcontrib><creatorcontrib>Malvar, Jemily</creatorcontrib><creatorcontrib>Blavier, Laurence</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Asgharzadeh, Shahab</creatorcontrib><creatorcontrib>Seeger, Robert C</creatorcontrib><creatorcontrib>DeClerck, Yves A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borriello, Lucia</au><au>Nakata, Rie</au><au>Sheard, Michael A</au><au>Fernandez, G Esteban</au><au>Sposto, Richard</au><au>Malvar, Jemily</au><au>Blavier, Laurence</au><au>Shimada, Hiroyuki</au><au>Asgharzadeh, Shahab</au><au>Seeger, Robert C</au><au>DeClerck, Yves A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>77</volume><issue>18</issue><spage>5142</spage><epage>5157</epage><pages>5142-5157</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced
neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs
and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity.
.</abstract><cop>United States</cop><pub>American Association for Cancer Research, Inc</pub><pmid>28687621</pmid><doi>10.1158/0008-5472.CAN-16-2586</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2017-09, Vol.77 (18), p.5142-5157 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_proquest_journals_1983254865 |
source | EZB Electronic Journals Library |
subjects | Animals Antineoplastic Agents - pharmacology Apoptosis - drug effects Biomarkers, Tumor - metabolism Bone marrow Bone Marrow Cells - drug effects Bone Marrow Cells - metabolism Bone Marrow Cells - pathology Bone tumors Cancer Cancer-Associated Fibroblasts - drug effects Cancer-Associated Fibroblasts - metabolism Cancer-Associated Fibroblasts - pathology Cell Differentiation - drug effects Cell proliferation Cell Proliferation - drug effects Cell survival Chemotherapy Culture Media, Conditioned - pharmacology Etoposide Female Fibroblasts Gene Expression Regulation, Neoplastic - drug effects Humans Immune system Immunodeficiency Janus kinase 2 Janus Kinase 2 - metabolism Macrophages Male MAP Kinase Kinase 1 - metabolism Mesenchymal stem cells Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - metabolism Mesenchymal Stromal Cells - pathology Mesenchyme Mice Mice, Inbred NOD Mice, SCID Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - metabolism Neuroblastoma Neuroblastoma - drug therapy Neuroblastoma - metabolism Neuroblastoma - pathology Neuroblasts Pyrazoles - pharmacology Pyridones - pharmacology Pyrimidinones - pharmacology Stat3 protein STAT3 Transcription Factor - metabolism Stromal cells Tumor Cells, Cultured Tumor Microenvironment - drug effects Tumors Xenograft Model Antitumor Assays Xenografts |
title | Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T13%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer-Associated%20Fibroblasts%20Share%20Characteristics%20and%20Protumorigenic%20Activity%20with%20Mesenchymal%20Stromal%20Cells&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Borriello,%20Lucia&rft.date=2017-09-15&rft.volume=77&rft.issue=18&rft.spage=5142&rft.epage=5157&rft.pages=5142-5157&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-16-2586&rft_dat=%3Cproquest_cross%3E1983254865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-6ee025fb937994b8d4cc95eefbdbac401a3c2e936ba3d9ff6e35e6c2ee3e77473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983254865&rft_id=info:pmid/28687621&rfr_iscdi=true |