Loading…

Silver‐doped 58S bioactive glass as an anti‐Leishmania agent

Bioactive glasses (BG) incorporating antimicrobial agents can be effectively used against microorganisms. In this work, the in vitro effectiveness of silver‐doped 58S BG (BGAg) against Leishmania species was studied. BG, BGAg1, and BGAg2 belonging to the system 58SiO2∙(36‐x) CaO·6P2O5·xAg2O, where x...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied glass science 2018-01, Vol.9 (1), p.52-61
Main Authors: Pires, Emanuene Galdino, Bonan, Roberta Ferreti, Rocha, Ítalo Martins, Gonçalves, Ingrid Morgana Fernandes, Souza, Joelma Rodrigues, Gonzales, Laura Helena Vega, Silva Júnior, José Valter Joaquim, Perez, Danyel Elias da Cruz, Tavares, Paula Cristina Brígido, Silva, Sydnei Magno da, Alves‐Balvedi, Renata Pereira, Goulart, Luiz Ricardo, Medeiros, Eliton Souto, Castellano, Lucio Roberto, Bonan, Paulo Rogério Ferreti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863
cites cdi_FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863
container_end_page 61
container_issue 1
container_start_page 52
container_title International journal of applied glass science
container_volume 9
creator Pires, Emanuene Galdino
Bonan, Roberta Ferreti
Rocha, Ítalo Martins
Gonçalves, Ingrid Morgana Fernandes
Souza, Joelma Rodrigues
Gonzales, Laura Helena Vega
Silva Júnior, José Valter Joaquim
Perez, Danyel Elias da Cruz
Tavares, Paula Cristina Brígido
Silva, Sydnei Magno da
Alves‐Balvedi, Renata Pereira
Goulart, Luiz Ricardo
Medeiros, Eliton Souto
Castellano, Lucio Roberto
Bonan, Paulo Rogério Ferreti
description Bioactive glasses (BG) incorporating antimicrobial agents can be effectively used against microorganisms. In this work, the in vitro effectiveness of silver‐doped 58S BG (BGAg) against Leishmania species was studied. BG, BGAg1, and BGAg2 belonging to the system 58SiO2∙(36‐x) CaO·6P2O5·xAg2O, where x=0, 1, and 2 mol.% Ag, were synthesized via sol‐gel, and characterized by scanning electron (SEM) and atomic force (AFM) microscopy, thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR), and surface‐enhanced Raman (Raman‐SERS) spectroscopy. Cytotoxicity was assessed in A549 lung adenocarcinoma cells. Leishmania amazonensis and Leishmania braziliensis cultures were exposed to all groups, and C57BL/6 macrophages were infected by over metacyclic form L. amazonensis under the exposure of BGAg particles. SEM and AFM images showed an irregular and network arranged surface. TGA, XRD, FTIR, and RAMAN‐SERS analyses confirmed silver inclusion within BG. None of the BG and BGAg presented toxicity. BGAg2 was effective in controlling promastigote forms under 150 and 300 μg/mL concentrations of both evaluated species. On macrophage invasion assay, BGAg2 presented reduction in metacyclic forms. For 72 hours, BGAg1 (150 μg/mL), BGAg1 (300 μg/mL), and BGAg2 in all concentrations were effective against intracellular infection. BGAg could be used as an alternative or complimentary agent to current chemotherapy.
doi_str_mv 10.1111/ijag.12285
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970886556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970886556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsNRefIKANyF1P7LJ5mYpWisFD9XzMkkmcUua1N200puP4DP6JG6MeHT4w8zhN19_Qi4ZnTIfN2YD1ZRxruQJGXEasZDxNDr9q1V8TibObagPoVScqhG5XZv6gPbr47Nod1gEUq2DzLSQd-aAQVWDcwF4NV6d8dgKjXvdQmMggAqb7oKclVA7nPzmMXm5v3ueP4Srp8VyPluFuUiYDDEqYqA8QwTmz8kjqSRIynNIRFJkUJRZmSWC0yKVCYoMYyzTElmaiDhCFYsxuRrm7mz7tkfX6U27t41fqT1E_TtS9tT1QOW2dc5iqXfWbMEeNaO6N0n3JukfkzzMBvjd1Hj8h9TLx9li6PkGrI1qKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970886556</pqid></control><display><type>article</type><title>Silver‐doped 58S bioactive glass as an anti‐Leishmania agent</title><source>Wiley</source><creator>Pires, Emanuene Galdino ; Bonan, Roberta Ferreti ; Rocha, Ítalo Martins ; Gonçalves, Ingrid Morgana Fernandes ; Souza, Joelma Rodrigues ; Gonzales, Laura Helena Vega ; Silva Júnior, José Valter Joaquim ; Perez, Danyel Elias da Cruz ; Tavares, Paula Cristina Brígido ; Silva, Sydnei Magno da ; Alves‐Balvedi, Renata Pereira ; Goulart, Luiz Ricardo ; Medeiros, Eliton Souto ; Castellano, Lucio Roberto ; Bonan, Paulo Rogério Ferreti</creator><creatorcontrib>Pires, Emanuene Galdino ; Bonan, Roberta Ferreti ; Rocha, Ítalo Martins ; Gonçalves, Ingrid Morgana Fernandes ; Souza, Joelma Rodrigues ; Gonzales, Laura Helena Vega ; Silva Júnior, José Valter Joaquim ; Perez, Danyel Elias da Cruz ; Tavares, Paula Cristina Brígido ; Silva, Sydnei Magno da ; Alves‐Balvedi, Renata Pereira ; Goulart, Luiz Ricardo ; Medeiros, Eliton Souto ; Castellano, Lucio Roberto ; Bonan, Paulo Rogério Ferreti</creatorcontrib><description>Bioactive glasses (BG) incorporating antimicrobial agents can be effectively used against microorganisms. In this work, the in vitro effectiveness of silver‐doped 58S BG (BGAg) against Leishmania species was studied. BG, BGAg1, and BGAg2 belonging to the system 58SiO2∙(36‐x) CaO·6P2O5·xAg2O, where x=0, 1, and 2 mol.% Ag, were synthesized via sol‐gel, and characterized by scanning electron (SEM) and atomic force (AFM) microscopy, thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR), and surface‐enhanced Raman (Raman‐SERS) spectroscopy. Cytotoxicity was assessed in A549 lung adenocarcinoma cells. Leishmania amazonensis and Leishmania braziliensis cultures were exposed to all groups, and C57BL/6 macrophages were infected by over metacyclic form L. amazonensis under the exposure of BGAg particles. SEM and AFM images showed an irregular and network arranged surface. TGA, XRD, FTIR, and RAMAN‐SERS analyses confirmed silver inclusion within BG. None of the BG and BGAg presented toxicity. BGAg2 was effective in controlling promastigote forms under 150 and 300 μg/mL concentrations of both evaluated species. On macrophage invasion assay, BGAg2 presented reduction in metacyclic forms. For 72 hours, BGAg1 (150 μg/mL), BGAg1 (300 μg/mL), and BGAg2 in all concentrations were effective against intracellular infection. BGAg could be used as an alternative or complimentary agent to current chemotherapy.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.12285</identifier><language>eng</language><publisher>Westerville: Wiley Subscription Services, Inc</publisher><subject>antiparasitic agent ; Atomic force microscopy ; Biocompatibility ; Biological activity ; Chemotherapy ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; leishmaniasis ; Macrophages ; Microorganisms ; Silver ; silver‐doped bioactive glass ; Sol-gel processes ; sol‐gel ; Toxicity ; X-ray diffraction</subject><ispartof>International journal of applied glass science, 2018-01, Vol.9 (1), p.52-61</ispartof><rights>2017 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2018 American Ceramic Society and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863</citedby><cites>FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863</cites><orcidid>0000-0002-4449-4343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijag.12285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijag.12285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Pires, Emanuene Galdino</creatorcontrib><creatorcontrib>Bonan, Roberta Ferreti</creatorcontrib><creatorcontrib>Rocha, Ítalo Martins</creatorcontrib><creatorcontrib>Gonçalves, Ingrid Morgana Fernandes</creatorcontrib><creatorcontrib>Souza, Joelma Rodrigues</creatorcontrib><creatorcontrib>Gonzales, Laura Helena Vega</creatorcontrib><creatorcontrib>Silva Júnior, José Valter Joaquim</creatorcontrib><creatorcontrib>Perez, Danyel Elias da Cruz</creatorcontrib><creatorcontrib>Tavares, Paula Cristina Brígido</creatorcontrib><creatorcontrib>Silva, Sydnei Magno da</creatorcontrib><creatorcontrib>Alves‐Balvedi, Renata Pereira</creatorcontrib><creatorcontrib>Goulart, Luiz Ricardo</creatorcontrib><creatorcontrib>Medeiros, Eliton Souto</creatorcontrib><creatorcontrib>Castellano, Lucio Roberto</creatorcontrib><creatorcontrib>Bonan, Paulo Rogério Ferreti</creatorcontrib><title>Silver‐doped 58S bioactive glass as an anti‐Leishmania agent</title><title>International journal of applied glass science</title><description>Bioactive glasses (BG) incorporating antimicrobial agents can be effectively used against microorganisms. In this work, the in vitro effectiveness of silver‐doped 58S BG (BGAg) against Leishmania species was studied. BG, BGAg1, and BGAg2 belonging to the system 58SiO2∙(36‐x) CaO·6P2O5·xAg2O, where x=0, 1, and 2 mol.% Ag, were synthesized via sol‐gel, and characterized by scanning electron (SEM) and atomic force (AFM) microscopy, thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR), and surface‐enhanced Raman (Raman‐SERS) spectroscopy. Cytotoxicity was assessed in A549 lung adenocarcinoma cells. Leishmania amazonensis and Leishmania braziliensis cultures were exposed to all groups, and C57BL/6 macrophages were infected by over metacyclic form L. amazonensis under the exposure of BGAg particles. SEM and AFM images showed an irregular and network arranged surface. TGA, XRD, FTIR, and RAMAN‐SERS analyses confirmed silver inclusion within BG. None of the BG and BGAg presented toxicity. BGAg2 was effective in controlling promastigote forms under 150 and 300 μg/mL concentrations of both evaluated species. On macrophage invasion assay, BGAg2 presented reduction in metacyclic forms. For 72 hours, BGAg1 (150 μg/mL), BGAg1 (300 μg/mL), and BGAg2 in all concentrations were effective against intracellular infection. BGAg could be used as an alternative or complimentary agent to current chemotherapy.</description><subject>antiparasitic agent</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Chemotherapy</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>leishmaniasis</subject><subject>Macrophages</subject><subject>Microorganisms</subject><subject>Silver</subject><subject>silver‐doped bioactive glass</subject><subject>Sol-gel processes</subject><subject>sol‐gel</subject><subject>Toxicity</subject><subject>X-ray diffraction</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AQxxdRsNRefIKANyF1P7LJ5mYpWisFD9XzMkkmcUua1N200puP4DP6JG6MeHT4w8zhN19_Qi4ZnTIfN2YD1ZRxruQJGXEasZDxNDr9q1V8TibObagPoVScqhG5XZv6gPbr47Nod1gEUq2DzLSQd-aAQVWDcwF4NV6d8dgKjXvdQmMggAqb7oKclVA7nPzmMXm5v3ueP4Srp8VyPluFuUiYDDEqYqA8QwTmz8kjqSRIynNIRFJkUJRZmSWC0yKVCYoMYyzTElmaiDhCFYsxuRrm7mz7tkfX6U27t41fqT1E_TtS9tT1QOW2dc5iqXfWbMEeNaO6N0n3JukfkzzMBvjd1Hj8h9TLx9li6PkGrI1qKQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Pires, Emanuene Galdino</creator><creator>Bonan, Roberta Ferreti</creator><creator>Rocha, Ítalo Martins</creator><creator>Gonçalves, Ingrid Morgana Fernandes</creator><creator>Souza, Joelma Rodrigues</creator><creator>Gonzales, Laura Helena Vega</creator><creator>Silva Júnior, José Valter Joaquim</creator><creator>Perez, Danyel Elias da Cruz</creator><creator>Tavares, Paula Cristina Brígido</creator><creator>Silva, Sydnei Magno da</creator><creator>Alves‐Balvedi, Renata Pereira</creator><creator>Goulart, Luiz Ricardo</creator><creator>Medeiros, Eliton Souto</creator><creator>Castellano, Lucio Roberto</creator><creator>Bonan, Paulo Rogério Ferreti</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4449-4343</orcidid></search><sort><creationdate>201801</creationdate><title>Silver‐doped 58S bioactive glass as an anti‐Leishmania agent</title><author>Pires, Emanuene Galdino ; Bonan, Roberta Ferreti ; Rocha, Ítalo Martins ; Gonçalves, Ingrid Morgana Fernandes ; Souza, Joelma Rodrigues ; Gonzales, Laura Helena Vega ; Silva Júnior, José Valter Joaquim ; Perez, Danyel Elias da Cruz ; Tavares, Paula Cristina Brígido ; Silva, Sydnei Magno da ; Alves‐Balvedi, Renata Pereira ; Goulart, Luiz Ricardo ; Medeiros, Eliton Souto ; Castellano, Lucio Roberto ; Bonan, Paulo Rogério Ferreti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>antiparasitic agent</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Chemotherapy</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>leishmaniasis</topic><topic>Macrophages</topic><topic>Microorganisms</topic><topic>Silver</topic><topic>silver‐doped bioactive glass</topic><topic>Sol-gel processes</topic><topic>sol‐gel</topic><topic>Toxicity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, Emanuene Galdino</creatorcontrib><creatorcontrib>Bonan, Roberta Ferreti</creatorcontrib><creatorcontrib>Rocha, Ítalo Martins</creatorcontrib><creatorcontrib>Gonçalves, Ingrid Morgana Fernandes</creatorcontrib><creatorcontrib>Souza, Joelma Rodrigues</creatorcontrib><creatorcontrib>Gonzales, Laura Helena Vega</creatorcontrib><creatorcontrib>Silva Júnior, José Valter Joaquim</creatorcontrib><creatorcontrib>Perez, Danyel Elias da Cruz</creatorcontrib><creatorcontrib>Tavares, Paula Cristina Brígido</creatorcontrib><creatorcontrib>Silva, Sydnei Magno da</creatorcontrib><creatorcontrib>Alves‐Balvedi, Renata Pereira</creatorcontrib><creatorcontrib>Goulart, Luiz Ricardo</creatorcontrib><creatorcontrib>Medeiros, Eliton Souto</creatorcontrib><creatorcontrib>Castellano, Lucio Roberto</creatorcontrib><creatorcontrib>Bonan, Paulo Rogério Ferreti</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pires, Emanuene Galdino</au><au>Bonan, Roberta Ferreti</au><au>Rocha, Ítalo Martins</au><au>Gonçalves, Ingrid Morgana Fernandes</au><au>Souza, Joelma Rodrigues</au><au>Gonzales, Laura Helena Vega</au><au>Silva Júnior, José Valter Joaquim</au><au>Perez, Danyel Elias da Cruz</au><au>Tavares, Paula Cristina Brígido</au><au>Silva, Sydnei Magno da</au><au>Alves‐Balvedi, Renata Pereira</au><au>Goulart, Luiz Ricardo</au><au>Medeiros, Eliton Souto</au><au>Castellano, Lucio Roberto</au><au>Bonan, Paulo Rogério Ferreti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver‐doped 58S bioactive glass as an anti‐Leishmania agent</atitle><jtitle>International journal of applied glass science</jtitle><date>2018-01</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>52</spage><epage>61</epage><pages>52-61</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>Bioactive glasses (BG) incorporating antimicrobial agents can be effectively used against microorganisms. In this work, the in vitro effectiveness of silver‐doped 58S BG (BGAg) against Leishmania species was studied. BG, BGAg1, and BGAg2 belonging to the system 58SiO2∙(36‐x) CaO·6P2O5·xAg2O, where x=0, 1, and 2 mol.% Ag, were synthesized via sol‐gel, and characterized by scanning electron (SEM) and atomic force (AFM) microscopy, thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Fourier‐transform infrared (FTIR), and surface‐enhanced Raman (Raman‐SERS) spectroscopy. Cytotoxicity was assessed in A549 lung adenocarcinoma cells. Leishmania amazonensis and Leishmania braziliensis cultures were exposed to all groups, and C57BL/6 macrophages were infected by over metacyclic form L. amazonensis under the exposure of BGAg particles. SEM and AFM images showed an irregular and network arranged surface. TGA, XRD, FTIR, and RAMAN‐SERS analyses confirmed silver inclusion within BG. None of the BG and BGAg presented toxicity. BGAg2 was effective in controlling promastigote forms under 150 and 300 μg/mL concentrations of both evaluated species. On macrophage invasion assay, BGAg2 presented reduction in metacyclic forms. For 72 hours, BGAg1 (150 μg/mL), BGAg1 (300 μg/mL), and BGAg2 in all concentrations were effective against intracellular infection. BGAg could be used as an alternative or complimentary agent to current chemotherapy.</abstract><cop>Westerville</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijag.12285</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4449-4343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-1286
ispartof International journal of applied glass science, 2018-01, Vol.9 (1), p.52-61
issn 2041-1286
2041-1294
language eng
recordid cdi_proquest_journals_1970886556
source Wiley
subjects antiparasitic agent
Atomic force microscopy
Biocompatibility
Biological activity
Chemotherapy
Fourier transforms
Infrared analysis
Infrared spectroscopy
leishmaniasis
Macrophages
Microorganisms
Silver
silver‐doped bioactive glass
Sol-gel processes
sol‐gel
Toxicity
X-ray diffraction
title Silver‐doped 58S bioactive glass as an anti‐Leishmania agent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%E2%80%90doped%2058S%20bioactive%20glass%20as%20an%20anti%E2%80%90Leishmania%20agent&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Pires,%20Emanuene%20Galdino&rft.date=2018-01&rft.volume=9&rft.issue=1&rft.spage=52&rft.epage=61&rft.pages=52-61&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.12285&rft_dat=%3Cproquest_cross%3E1970886556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3715-e4d6a02beea1204c4585a502ca737dbadfbfb7320d957e3be6ef9fe197364e863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970886556&rft_id=info:pmid/&rfr_iscdi=true