Loading…

Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications

Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, ma...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2017-10, Vol.44 (19), p.9823-9832
Main Authors: Begeman, Carolyn Branecky, Tulaczyk, Slawek M., Fisher, Andrew T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3
cites cdi_FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3
container_end_page 9832
container_issue 19
container_start_page 9823
container_title Geophysical research letters
container_volume 44
creator Begeman, Carolyn Branecky
Tulaczyk, Slawek M.
Fisher, Andrew T.
description Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, made in subglacial sediment near the grounding zone of the Whillans Ice Stream. The measured GHF is 88 ± 7 mW m−2, a relatively high value compared to other continental settings and to other GHF measurements along the eastern Ross Sea of 55 mW m−2 and 69 ± 21 mW m−2 but within the range of regional values indicated by geophysical estimates. The new GHF measurement was made ~100 km from the only other direct GHF measurement below the ice sheet, which was considerably higher at 285 ± 80 mW m−2, suggesting spatial variability that could be explained by shallow magmatic intrusions or the advection of heat by crustal fluids. Analytical calculations suggest that spatial variability in GHF exceeds spatial variability in the conductive heat flux through ice along the Siple Coast. Accurate GHF measurements and high‐resolution GHF models may be necessary to reliably predict ice sheet evolution, including responses to ongoing and future climate change. Key Points Measured geothermal flux at the grounding zone of the Whillans Ice Stream is 88 ± 7 mW m−2, higher than the average continental flux West Antarctica exhibits high spatial variability in geothermal flux, consistent with local magmatic intrusions or crustal fluid advection Spatial variability in geothermal flux exceeds spatial variability in the conductive heat flux through ice along the Siple Coast
doi_str_mv 10.1002/2017GL075579
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956124046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956124046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFZvfoAFr0Zn_ybrrRSbFgKCWj2GzWaDW7ZJ3KRqv70r9eDJ0zyGH_PePIQuCdwQAHpLgaR5AakQqTpCE6I4TzKA9BhNAFTUNJWn6GwYNgDAgJEJWj_1enTa-z1-0cHpyluc2258s2GrPV5aPeKF331h1-JXO4x41o46mNEZfYfvP1xtW2Oxbmu82vY-bkfXtcM5Omm0H-zF75yi9eL-eb5Miod8NZ8VieaMqUTUVqrKcmqpqLPaxFDcGiGozSRrgBkev0qbJtVcSsoUgGRMsMpKVrHKNGyKrg53-9C972K8ctPtQhstS6KEJJQDl5G6PlAmdMMQbFP2wW112JcEyp_iyr_FRZwe8E_n7f5ftswfCyF5ptg3blFtVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956124046</pqid></control><display><type>article</type><title>Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Begeman, Carolyn Branecky ; Tulaczyk, Slawek M. ; Fisher, Andrew T.</creator><creatorcontrib>Begeman, Carolyn Branecky ; Tulaczyk, Slawek M. ; Fisher, Andrew T.</creatorcontrib><description>Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, made in subglacial sediment near the grounding zone of the Whillans Ice Stream. The measured GHF is 88 ± 7 mW m−2, a relatively high value compared to other continental settings and to other GHF measurements along the eastern Ross Sea of 55 mW m−2 and 69 ± 21 mW m−2 but within the range of regional values indicated by geophysical estimates. The new GHF measurement was made ~100 km from the only other direct GHF measurement below the ice sheet, which was considerably higher at 285 ± 80 mW m−2, suggesting spatial variability that could be explained by shallow magmatic intrusions or the advection of heat by crustal fluids. Analytical calculations suggest that spatial variability in GHF exceeds spatial variability in the conductive heat flux through ice along the Siple Coast. Accurate GHF measurements and high‐resolution GHF models may be necessary to reliably predict ice sheet evolution, including responses to ongoing and future climate change. Key Points Measured geothermal flux at the grounding zone of the Whillans Ice Stream is 88 ± 7 mW m−2, higher than the average continental flux West Antarctica exhibits high spatial variability in geothermal flux, consistent with local magmatic intrusions or crustal fluid advection Spatial variability in geothermal flux exceeds spatial variability in the conductive heat flux through ice along the Siple Coast</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL075579</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; Antarctic ice sheet ; Climate change ; Computational fluid dynamics ; cryosphere ; Dynamics ; Evolution ; Fluctuations ; Fluids ; Future climates ; Geophysics ; geothermal ; Geothermal power ; Glaciation ; Heat ; Heat budget ; Heat flux ; Heat transfer ; Ice ; Ice sheet dynamics ; Ice sheets ; ice stream ; Measurement ; Sea level ; Spatial variability ; Spatial variations ; Variability ; West Antarctic Ice Sheet ; WISSARD</subject><ispartof>Geophysical research letters, 2017-10, Vol.44 (19), p.9823-9832</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3</citedby><cites>FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3</cites><orcidid>0000-0003-2102-8320 ; 0000-0002-9711-4332 ; 0000-0001-9828-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL075579$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL075579$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,11541,27957,27958,46503,46927,50923,51032</link.rule.ids></links><search><creatorcontrib>Begeman, Carolyn Branecky</creatorcontrib><creatorcontrib>Tulaczyk, Slawek M.</creatorcontrib><creatorcontrib>Fisher, Andrew T.</creatorcontrib><title>Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications</title><title>Geophysical research letters</title><description>Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, made in subglacial sediment near the grounding zone of the Whillans Ice Stream. The measured GHF is 88 ± 7 mW m−2, a relatively high value compared to other continental settings and to other GHF measurements along the eastern Ross Sea of 55 mW m−2 and 69 ± 21 mW m−2 but within the range of regional values indicated by geophysical estimates. The new GHF measurement was made ~100 km from the only other direct GHF measurement below the ice sheet, which was considerably higher at 285 ± 80 mW m−2, suggesting spatial variability that could be explained by shallow magmatic intrusions or the advection of heat by crustal fluids. Analytical calculations suggest that spatial variability in GHF exceeds spatial variability in the conductive heat flux through ice along the Siple Coast. Accurate GHF measurements and high‐resolution GHF models may be necessary to reliably predict ice sheet evolution, including responses to ongoing and future climate change. Key Points Measured geothermal flux at the grounding zone of the Whillans Ice Stream is 88 ± 7 mW m−2, higher than the average continental flux West Antarctica exhibits high spatial variability in geothermal flux, consistent with local magmatic intrusions or crustal fluid advection Spatial variability in geothermal flux exceeds spatial variability in the conductive heat flux through ice along the Siple Coast</description><subject>Advection</subject><subject>Antarctic ice sheet</subject><subject>Climate change</subject><subject>Computational fluid dynamics</subject><subject>cryosphere</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Fluctuations</subject><subject>Fluids</subject><subject>Future climates</subject><subject>Geophysics</subject><subject>geothermal</subject><subject>Geothermal power</subject><subject>Glaciation</subject><subject>Heat</subject><subject>Heat budget</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Ice</subject><subject>Ice sheet dynamics</subject><subject>Ice sheets</subject><subject>ice stream</subject><subject>Measurement</subject><subject>Sea level</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Variability</subject><subject>West Antarctic Ice Sheet</subject><subject>WISSARD</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFZvfoAFr0Zn_ybrrRSbFgKCWj2GzWaDW7ZJ3KRqv70r9eDJ0zyGH_PePIQuCdwQAHpLgaR5AakQqTpCE6I4TzKA9BhNAFTUNJWn6GwYNgDAgJEJWj_1enTa-z1-0cHpyluc2258s2GrPV5aPeKF331h1-JXO4x41o46mNEZfYfvP1xtW2Oxbmu82vY-bkfXtcM5Omm0H-zF75yi9eL-eb5Miod8NZ8VieaMqUTUVqrKcmqpqLPaxFDcGiGozSRrgBkev0qbJtVcSsoUgGRMsMpKVrHKNGyKrg53-9C972K8ctPtQhstS6KEJJQDl5G6PlAmdMMQbFP2wW112JcEyp_iyr_FRZwe8E_n7f5ftswfCyF5ptg3blFtVw</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>Begeman, Carolyn Branecky</creator><creator>Tulaczyk, Slawek M.</creator><creator>Fisher, Andrew T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2102-8320</orcidid><orcidid>https://orcid.org/0000-0002-9711-4332</orcidid><orcidid>https://orcid.org/0000-0001-9828-1741</orcidid></search><sort><creationdate>20171016</creationdate><title>Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications</title><author>Begeman, Carolyn Branecky ; Tulaczyk, Slawek M. ; Fisher, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advection</topic><topic>Antarctic ice sheet</topic><topic>Climate change</topic><topic>Computational fluid dynamics</topic><topic>cryosphere</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Fluctuations</topic><topic>Fluids</topic><topic>Future climates</topic><topic>Geophysics</topic><topic>geothermal</topic><topic>Geothermal power</topic><topic>Glaciation</topic><topic>Heat</topic><topic>Heat budget</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Ice</topic><topic>Ice sheet dynamics</topic><topic>Ice sheets</topic><topic>ice stream</topic><topic>Measurement</topic><topic>Sea level</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Variability</topic><topic>West Antarctic Ice Sheet</topic><topic>WISSARD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Begeman, Carolyn Branecky</creatorcontrib><creatorcontrib>Tulaczyk, Slawek M.</creatorcontrib><creatorcontrib>Fisher, Andrew T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Begeman, Carolyn Branecky</au><au>Tulaczyk, Slawek M.</au><au>Fisher, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications</atitle><jtitle>Geophysical research letters</jtitle><date>2017-10-16</date><risdate>2017</risdate><volume>44</volume><issue>19</issue><spage>9823</spage><epage>9832</epage><pages>9823-9832</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, made in subglacial sediment near the grounding zone of the Whillans Ice Stream. The measured GHF is 88 ± 7 mW m−2, a relatively high value compared to other continental settings and to other GHF measurements along the eastern Ross Sea of 55 mW m−2 and 69 ± 21 mW m−2 but within the range of regional values indicated by geophysical estimates. The new GHF measurement was made ~100 km from the only other direct GHF measurement below the ice sheet, which was considerably higher at 285 ± 80 mW m−2, suggesting spatial variability that could be explained by shallow magmatic intrusions or the advection of heat by crustal fluids. Analytical calculations suggest that spatial variability in GHF exceeds spatial variability in the conductive heat flux through ice along the Siple Coast. Accurate GHF measurements and high‐resolution GHF models may be necessary to reliably predict ice sheet evolution, including responses to ongoing and future climate change. Key Points Measured geothermal flux at the grounding zone of the Whillans Ice Stream is 88 ± 7 mW m−2, higher than the average continental flux West Antarctica exhibits high spatial variability in geothermal flux, consistent with local magmatic intrusions or crustal fluid advection Spatial variability in geothermal flux exceeds spatial variability in the conductive heat flux through ice along the Siple Coast</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL075579</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2102-8320</orcidid><orcidid>https://orcid.org/0000-0002-9711-4332</orcidid><orcidid>https://orcid.org/0000-0001-9828-1741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-10, Vol.44 (19), p.9823-9832
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1956124046
source Wiley; Wiley-Blackwell AGU Digital Library
subjects Advection
Antarctic ice sheet
Climate change
Computational fluid dynamics
cryosphere
Dynamics
Evolution
Fluctuations
Fluids
Future climates
Geophysics
geothermal
Geothermal power
Glaciation
Heat
Heat budget
Heat flux
Heat transfer
Ice
Ice sheet dynamics
Ice sheets
ice stream
Measurement
Sea level
Spatial variability
Spatial variations
Variability
West Antarctic Ice Sheet
WISSARD
title Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T00%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Variable%20Geothermal%20Heat%20Flux%20in%20West%20Antarctica:%20Evidence%20and%20Implications&rft.jtitle=Geophysical%20research%20letters&rft.au=Begeman,%20Carolyn%20Branecky&rft.date=2017-10-16&rft.volume=44&rft.issue=19&rft.spage=9823&rft.epage=9832&rft.pages=9823-9832&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL075579&rft_dat=%3Cproquest_cross%3E1956124046%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4339-5de69be42e25d8dc0034ec552e863f03c40027ff7a4662390063353be63b3bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956124046&rft_id=info:pmid/&rfr_iscdi=true