Loading…

Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3

The heat capacity of ceramic BiFe1–xZnxO3 multiferroics has been studied in the temperature range 150–750 K. It is found that the antiferromagnetic transition temperature TN slightly shifts to lower temperatures as the concentration of the substitutional impurity Zn increases. An excess heat treatme...

Full description

Saved in:
Bibliographic Details
Published in:Physics of the solid state 2017-09, Vol.59 (9), p.1883-1886
Main Authors: Amirov, A. A., Kallaev, S. N., Omarov, Z. M., Yusupov, D. M., Chaudhary, Y. A., Bendre, S. T., Makoed, I. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3
cites cdi_FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3
container_end_page 1886
container_issue 9
container_start_page 1883
container_title Physics of the solid state
container_volume 59
creator Amirov, A. A.
Kallaev, S. N.
Omarov, Z. M.
Yusupov, D. M.
Chaudhary, Y. A.
Bendre, S. T.
Makoed, I. I.
description The heat capacity of ceramic BiFe1–xZnxO3 multiferroics has been studied in the temperature range 150–750 K. It is found that the antiferromagnetic transition temperature TN slightly shifts to lower temperatures as the concentration of the substitutional impurity Zn increases. An excess heat treatment has been observed; it is considered as the Schottky anomaly in three-level states.
doi_str_mv 10.1134/S1063783417090037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940231579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940231579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3</originalsourceid><addsrcrecordid>eNplkMFKw0AYhBdRsFYfwNuC5-j_599sdk-ixVqh0IN68RI2mw2ktEnc3UB78x18Q5_ElHrzNAPzMQPD2DXCLSKJu1cESbkigTloAMpP2ARHl0gh4fTgJSWH_JxdhLAGQMRMT9j9wpnIremNbeKedzVvTduF6AcbB-8qvh02samd911jA39s5g5_vr53_KPlO76iS3ZWm01wV386Ze_zp7fZIlmunl9mD8vEIiqdaKtJkgBQEjMJqTNGKZehtnVVCoOWSFiqSpVKnWVSVE7luYJSplpYoSqasptjb--7z8GFWKy7wbfjZIFaQEqY5Xqk8EhZ34XgXV30vtkavy8QisNPxb-f6BdEXVi1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940231579</pqid></control><display><type>article</type><title>Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3</title><source>Springer Link</source><creator>Amirov, A. A. ; Kallaev, S. N. ; Omarov, Z. M. ; Yusupov, D. M. ; Chaudhary, Y. A. ; Bendre, S. T. ; Makoed, I. I.</creator><creatorcontrib>Amirov, A. A. ; Kallaev, S. N. ; Omarov, Z. M. ; Yusupov, D. M. ; Chaudhary, Y. A. ; Bendre, S. T. ; Makoed, I. I.</creatorcontrib><description>The heat capacity of ceramic BiFe1–xZnxO3 multiferroics has been studied in the temperature range 150–750 K. It is found that the antiferromagnetic transition temperature TN slightly shifts to lower temperatures as the concentration of the substitutional impurity Zn increases. An excess heat treatment has been observed; it is considered as the Schottky anomaly in three-level states.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783417090037</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Alloys ; Antiferromagnetism ; Heat ; Heat treatment ; Multiferroic materials ; Specific heat ; Substitutional impurities ; Transition temperature</subject><ispartof>Physics of the solid state, 2017-09, Vol.59 (9), p.1883-1886</ispartof><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3</citedby><cites>FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Amirov, A. A.</creatorcontrib><creatorcontrib>Kallaev, S. N.</creatorcontrib><creatorcontrib>Omarov, Z. M.</creatorcontrib><creatorcontrib>Yusupov, D. M.</creatorcontrib><creatorcontrib>Chaudhary, Y. A.</creatorcontrib><creatorcontrib>Bendre, S. T.</creatorcontrib><creatorcontrib>Makoed, I. I.</creatorcontrib><title>Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3</title><title>Physics of the solid state</title><description>The heat capacity of ceramic BiFe1–xZnxO3 multiferroics has been studied in the temperature range 150–750 K. It is found that the antiferromagnetic transition temperature TN slightly shifts to lower temperatures as the concentration of the substitutional impurity Zn increases. An excess heat treatment has been observed; it is considered as the Schottky anomaly in three-level states.</description><subject>Alloys</subject><subject>Antiferromagnetism</subject><subject>Heat</subject><subject>Heat treatment</subject><subject>Multiferroic materials</subject><subject>Specific heat</subject><subject>Substitutional impurities</subject><subject>Transition temperature</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkMFKw0AYhBdRsFYfwNuC5-j_599sdk-ixVqh0IN68RI2mw2ktEnc3UB78x18Q5_ElHrzNAPzMQPD2DXCLSKJu1cESbkigTloAMpP2ARHl0gh4fTgJSWH_JxdhLAGQMRMT9j9wpnIremNbeKedzVvTduF6AcbB-8qvh02samd911jA39s5g5_vr53_KPlO76iS3ZWm01wV386Ze_zp7fZIlmunl9mD8vEIiqdaKtJkgBQEjMJqTNGKZehtnVVCoOWSFiqSpVKnWVSVE7luYJSplpYoSqasptjb--7z8GFWKy7wbfjZIFaQEqY5Xqk8EhZ34XgXV30vtkavy8QisNPxb-f6BdEXVi1</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Amirov, A. A.</creator><creator>Kallaev, S. N.</creator><creator>Omarov, Z. M.</creator><creator>Yusupov, D. M.</creator><creator>Chaudhary, Y. A.</creator><creator>Bendre, S. T.</creator><creator>Makoed, I. I.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201709</creationdate><title>Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3</title><author>Amirov, A. A. ; Kallaev, S. N. ; Omarov, Z. M. ; Yusupov, D. M. ; Chaudhary, Y. A. ; Bendre, S. T. ; Makoed, I. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Antiferromagnetism</topic><topic>Heat</topic><topic>Heat treatment</topic><topic>Multiferroic materials</topic><topic>Specific heat</topic><topic>Substitutional impurities</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirov, A. A.</creatorcontrib><creatorcontrib>Kallaev, S. N.</creatorcontrib><creatorcontrib>Omarov, Z. M.</creatorcontrib><creatorcontrib>Yusupov, D. M.</creatorcontrib><creatorcontrib>Chaudhary, Y. A.</creatorcontrib><creatorcontrib>Bendre, S. T.</creatorcontrib><creatorcontrib>Makoed, I. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirov, A. A.</au><au>Kallaev, S. N.</au><au>Omarov, Z. M.</au><au>Yusupov, D. M.</au><au>Chaudhary, Y. A.</au><au>Bendre, S. T.</au><au>Makoed, I. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3</atitle><jtitle>Physics of the solid state</jtitle><date>2017-09</date><risdate>2017</risdate><volume>59</volume><issue>9</issue><spage>1883</spage><epage>1886</epage><pages>1883-1886</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The heat capacity of ceramic BiFe1–xZnxO3 multiferroics has been studied in the temperature range 150–750 K. It is found that the antiferromagnetic transition temperature TN slightly shifts to lower temperatures as the concentration of the substitutional impurity Zn increases. An excess heat treatment has been observed; it is considered as the Schottky anomaly in three-level states.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S1063783417090037</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2017-09, Vol.59 (9), p.1883-1886
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_1940231579
source Springer Link
subjects Alloys
Antiferromagnetism
Heat
Heat treatment
Multiferroic materials
Specific heat
Substitutional impurities
Transition temperature
title Heat capacity of nanostructured multiferroics BiFe1–x Zn x O3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-20T11%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20capacity%20of%20nanostructured%20multiferroics%20BiFe1%E2%80%93x%20Zn%20x%20O3&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Amirov,%20A.%20A.&rft.date=2017-09&rft.volume=59&rft.issue=9&rft.spage=1883&rft.epage=1886&rft.pages=1883-1886&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783417090037&rft_dat=%3Cproquest_cross%3E1940231579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1189-9c93634008615602eaa88e519cfdb4a1c334c3db82695564de87780b6294c48d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1940231579&rft_id=info:pmid/&rfr_iscdi=true