Loading…

Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy

•Mn0.5Zn0.5FeO4 nanoparticles were synthesized using a hydrothermal method.•The coercivity at different temperatures was studied using the mixed coercivity model.•A superspin glass from strong interactions.•High intrinsic loss power was found to be comparable to that of ferrite and some commercial f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2017-07, Vol.433, p.76-83
Main Authors: Phong, P.T., Nam, P.H., Manh, D.H., Lee, In-Ja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933
cites cdi_FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933
container_end_page 83
container_issue
container_start_page 76
container_title Journal of magnetism and magnetic materials
container_volume 433
creator Phong, P.T.
Nam, P.H.
Manh, D.H.
Lee, In-Ja
description •Mn0.5Zn0.5FeO4 nanoparticles were synthesized using a hydrothermal method.•The coercivity at different temperatures was studied using the mixed coercivity model.•A superspin glass from strong interactions.•High intrinsic loss power was found to be comparable to that of ferrite and some commercial ferrofluids. Nanosized mixed ferrite Mn0.5Zn0.5Fe2O4 with crystalline size ∼15nm has been prepared by hydrothermal route. XRD patterns confirm that the crystallites have single phase cubic spinel structure. The dynamic scaling analysis on the frequency dependence of spin glass-like transition temperature well explains the model of a transition at finite temperature. The analysis gives critical exponent and parameters as: zν=10.48, T0=190K, f0=5.38×1010 and this confirms the occurrence of spin glass-like transition in Mn0.5Zn0.5Fe2O4 particles. The saturation magnetization and the coercivity change with temperature. The effective magnetic anisotropy constant of sample was calculated using the law of approach to saturation. The coercivity at different temperatures was deduced using the mixed coercivity model. The calculated coercivity results are in a good agreement with the experimental ones. The magnetic heating ability of Mn0.5Zn0.5Fe2O4 magnetic fluid was studied with an induction heating system. The calculated intrinsic loss power (ILP) was 3.75gnHm2/kg. This study indicates that the resulting Mn0.5Zn0.5Fe2O4 nanoparticles are promising materials in magnetic hyperthermia.
doi_str_mv 10.1016/j.jmmm.2017.03.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938554370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885316333704</els_id><sourcerecordid>1938554370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMSfYseOHxIIqXlJRF7qwWK5zTRw1D-wA6r8nUZlZ7lnOOffoQ-iakpwSKm6bvGnbNi8IlTlhOSH0BC2okizjUohTtCCM8Eypkp2ji5QaMjm4Egu0fe1IXr7P5xGKDced7frBxjG4PST8E8Ya1-GjxqEbY-hScHjfp4SH_gci9n3E9WGAONYQ22DxrHY4XKIzb_cJrv50ibaPD2-r52y9eXpZ3a8zxwo1ZtZK7kRhqS6ErpjX0nJwile6Kr3nVBZ85wVwRaz3JSV2tytLCVZrp4TQjC3RzbF3iP3nF6TRNP1X7KaXhmqmypIzSSZXcXS5OE2P4M0QQ2vjwVBiZnymMTM-M-MzhJkJzhS6O4Zg2v8dIJrkAnQOqhDBjabqw3_xX61keJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938554370</pqid></control><display><type>article</type><title>Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy</title><source>Elsevier</source><creator>Phong, P.T. ; Nam, P.H. ; Manh, D.H. ; Lee, In-Ja</creator><creatorcontrib>Phong, P.T. ; Nam, P.H. ; Manh, D.H. ; Lee, In-Ja</creatorcontrib><description>•Mn0.5Zn0.5FeO4 nanoparticles were synthesized using a hydrothermal method.•The coercivity at different temperatures was studied using the mixed coercivity model.•A superspin glass from strong interactions.•High intrinsic loss power was found to be comparable to that of ferrite and some commercial ferrofluids. Nanosized mixed ferrite Mn0.5Zn0.5Fe2O4 with crystalline size ∼15nm has been prepared by hydrothermal route. XRD patterns confirm that the crystallites have single phase cubic spinel structure. The dynamic scaling analysis on the frequency dependence of spin glass-like transition temperature well explains the model of a transition at finite temperature. The analysis gives critical exponent and parameters as: zν=10.48, T0=190K, f0=5.38×1010 and this confirms the occurrence of spin glass-like transition in Mn0.5Zn0.5Fe2O4 particles. The saturation magnetization and the coercivity change with temperature. The effective magnetic anisotropy constant of sample was calculated using the law of approach to saturation. The coercivity at different temperatures was deduced using the mixed coercivity model. The calculated coercivity results are in a good agreement with the experimental ones. The magnetic heating ability of Mn0.5Zn0.5Fe2O4 magnetic fluid was studied with an induction heating system. The calculated intrinsic loss power (ILP) was 3.75gnHm2/kg. This study indicates that the resulting Mn0.5Zn0.5Fe2O4 nanoparticles are promising materials in magnetic hyperthermia.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2017.03.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Coercivities ; Coercivity ; Crystallites ; Ferrites ; Fever ; Hydrothermal ; Hyperthermia ; Induction heating ; Iron ; Magnetic anisotropy ; Manganese ; Mathematical models ; Mn-Zn ferrite spinel ; Nanoparticle ; Nanoparticles ; Spin glass ; Spin glasses ; Spinel ; Studies ; Transition temperature ; Zinc</subject><ispartof>Journal of magnetism and magnetic materials, 2017-07, Vol.433, p.76-83</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933</citedby><cites>FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933</cites><orcidid>0000-0002-4569-892X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Phong, P.T.</creatorcontrib><creatorcontrib>Nam, P.H.</creatorcontrib><creatorcontrib>Manh, D.H.</creatorcontrib><creatorcontrib>Lee, In-Ja</creatorcontrib><title>Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy</title><title>Journal of magnetism and magnetic materials</title><description>•Mn0.5Zn0.5FeO4 nanoparticles were synthesized using a hydrothermal method.•The coercivity at different temperatures was studied using the mixed coercivity model.•A superspin glass from strong interactions.•High intrinsic loss power was found to be comparable to that of ferrite and some commercial ferrofluids. Nanosized mixed ferrite Mn0.5Zn0.5Fe2O4 with crystalline size ∼15nm has been prepared by hydrothermal route. XRD patterns confirm that the crystallites have single phase cubic spinel structure. The dynamic scaling analysis on the frequency dependence of spin glass-like transition temperature well explains the model of a transition at finite temperature. The analysis gives critical exponent and parameters as: zν=10.48, T0=190K, f0=5.38×1010 and this confirms the occurrence of spin glass-like transition in Mn0.5Zn0.5Fe2O4 particles. The saturation magnetization and the coercivity change with temperature. The effective magnetic anisotropy constant of sample was calculated using the law of approach to saturation. The coercivity at different temperatures was deduced using the mixed coercivity model. The calculated coercivity results are in a good agreement with the experimental ones. The magnetic heating ability of Mn0.5Zn0.5Fe2O4 magnetic fluid was studied with an induction heating system. The calculated intrinsic loss power (ILP) was 3.75gnHm2/kg. This study indicates that the resulting Mn0.5Zn0.5Fe2O4 nanoparticles are promising materials in magnetic hyperthermia.</description><subject>Anisotropy</subject><subject>Coercivities</subject><subject>Coercivity</subject><subject>Crystallites</subject><subject>Ferrites</subject><subject>Fever</subject><subject>Hydrothermal</subject><subject>Hyperthermia</subject><subject>Induction heating</subject><subject>Iron</subject><subject>Magnetic anisotropy</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Mn-Zn ferrite spinel</subject><subject>Nanoparticle</subject><subject>Nanoparticles</subject><subject>Spin glass</subject><subject>Spin glasses</subject><subject>Spinel</subject><subject>Studies</subject><subject>Transition temperature</subject><subject>Zinc</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMSfYseOHxIIqXlJRF7qwWK5zTRw1D-wA6r8nUZlZ7lnOOffoQ-iakpwSKm6bvGnbNi8IlTlhOSH0BC2okizjUohTtCCM8Eypkp2ji5QaMjm4Egu0fe1IXr7P5xGKDced7frBxjG4PST8E8Ya1-GjxqEbY-hScHjfp4SH_gci9n3E9WGAONYQ22DxrHY4XKIzb_cJrv50ibaPD2-r52y9eXpZ3a8zxwo1ZtZK7kRhqS6ErpjX0nJwile6Kr3nVBZ85wVwRaz3JSV2tytLCVZrp4TQjC3RzbF3iP3nF6TRNP1X7KaXhmqmypIzSSZXcXS5OE2P4M0QQ2vjwVBiZnymMTM-M-MzhJkJzhS6O4Zg2v8dIJrkAnQOqhDBjabqw3_xX61keJY</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Phong, P.T.</creator><creator>Nam, P.H.</creator><creator>Manh, D.H.</creator><creator>Lee, In-Ja</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4569-892X</orcidid></search><sort><creationdate>20170701</creationdate><title>Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy</title><author>Phong, P.T. ; Nam, P.H. ; Manh, D.H. ; Lee, In-Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Coercivities</topic><topic>Coercivity</topic><topic>Crystallites</topic><topic>Ferrites</topic><topic>Fever</topic><topic>Hydrothermal</topic><topic>Hyperthermia</topic><topic>Induction heating</topic><topic>Iron</topic><topic>Magnetic anisotropy</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Mn-Zn ferrite spinel</topic><topic>Nanoparticle</topic><topic>Nanoparticles</topic><topic>Spin glass</topic><topic>Spin glasses</topic><topic>Spinel</topic><topic>Studies</topic><topic>Transition temperature</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phong, P.T.</creatorcontrib><creatorcontrib>Nam, P.H.</creatorcontrib><creatorcontrib>Manh, D.H.</creatorcontrib><creatorcontrib>Lee, In-Ja</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phong, P.T.</au><au>Nam, P.H.</au><au>Manh, D.H.</au><au>Lee, In-Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>433</volume><spage>76</spage><epage>83</epage><pages>76-83</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Mn0.5Zn0.5FeO4 nanoparticles were synthesized using a hydrothermal method.•The coercivity at different temperatures was studied using the mixed coercivity model.•A superspin glass from strong interactions.•High intrinsic loss power was found to be comparable to that of ferrite and some commercial ferrofluids. Nanosized mixed ferrite Mn0.5Zn0.5Fe2O4 with crystalline size ∼15nm has been prepared by hydrothermal route. XRD patterns confirm that the crystallites have single phase cubic spinel structure. The dynamic scaling analysis on the frequency dependence of spin glass-like transition temperature well explains the model of a transition at finite temperature. The analysis gives critical exponent and parameters as: zν=10.48, T0=190K, f0=5.38×1010 and this confirms the occurrence of spin glass-like transition in Mn0.5Zn0.5Fe2O4 particles. The saturation magnetization and the coercivity change with temperature. The effective magnetic anisotropy constant of sample was calculated using the law of approach to saturation. The coercivity at different temperatures was deduced using the mixed coercivity model. The calculated coercivity results are in a good agreement with the experimental ones. The magnetic heating ability of Mn0.5Zn0.5Fe2O4 magnetic fluid was studied with an induction heating system. The calculated intrinsic loss power (ILP) was 3.75gnHm2/kg. This study indicates that the resulting Mn0.5Zn0.5Fe2O4 nanoparticles are promising materials in magnetic hyperthermia.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2017.03.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4569-892X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2017-07, Vol.433, p.76-83
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_1938554370
source Elsevier
subjects Anisotropy
Coercivities
Coercivity
Crystallites
Ferrites
Fever
Hydrothermal
Hyperthermia
Induction heating
Iron
Magnetic anisotropy
Manganese
Mathematical models
Mn-Zn ferrite spinel
Nanoparticle
Nanoparticles
Spin glass
Spin glasses
Spinel
Studies
Transition temperature
Zinc
title Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn0.5Zn0.5Fe2O4%20nanoparticles%20with%20high%20intrinsic%20loss%20power%20for%20hyperthermia%20therapy&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Phong,%20P.T.&rft.date=2017-07-01&rft.volume=433&rft.spage=76&rft.epage=83&rft.pages=76-83&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2017.03.001&rft_dat=%3Cproquest_cross%3E1938554370%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-aa74c62a19269d3f97a4ec84d9d5ff41724bf6e480aff510abb557ea99c866933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1938554370&rft_id=info:pmid/&rfr_iscdi=true