Loading…

Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties

An Nb-doped ZnO nanowall is fabricated by radio-frequency (RF) magnetron sputtering at 250 °C for application in a gas sensor. The fabricated Nb-doped ZnO nanowall is characterized by field emission scanning microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffract...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2017-03, Vol.698, p.77-86
Main Authors: Kim, Seong-Hwan, Shim, Gyu-In, Choi, Se-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983
cites cdi_FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983
container_end_page 86
container_issue
container_start_page 77
container_title Journal of alloys and compounds
container_volume 698
creator Kim, Seong-Hwan
Shim, Gyu-In
Choi, Se-Young
description An Nb-doped ZnO nanowall is fabricated by radio-frequency (RF) magnetron sputtering at 250 °C for application in a gas sensor. The fabricated Nb-doped ZnO nanowall is characterized by field emission scanning microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Nb-doped ZnO nanowall is observed to show a predominant exposed polarized (002) plane. The specific surface area is increased relative to that of the parent ZnO nanowall from 9.2 ± 0.42 m2 g−1 to 9.8 ± 0.52 m2 g−1. The segregation of Nb does not occur in the Nb-doped sample observed by TEM; this indicates that the addition of Nb occurs within the solid-solution limit of the ZnO host lattice. The Nb-doped ZnO nanowall gas sensor presents excellent gas sensing properties for acetone and ethanol gases at a relatively low operating temperature. We confirm the effects of Nb-doping on the ZnO nanowall, such as the exposed (002) plane, specific surface area increase, and electronic structural changes. Nb doping of the ZnO host lattice is a promising method that enhances the acetone and ethanol gas-sensing capacity at a relatively low operating temperature. [Display omitted] •Nb-doped ZnO nanowalls were grown by RF magnetron sputtering.•Nb doping increased crystallinity, surface area, & charge carrier concentration.•Doped ZnO showed good sensitivity (resistance changes) to reducing target gases.•Gas sensors of nanowalls showed lower operating temperatures than other sensors did.•Growth & sensing enhancement mechanisms were elucidated.
doi_str_mv 10.1016/j.jallcom.2016.11.377
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933931843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838816338609</els_id><sourcerecordid>1933931843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfQQh43jWv2T_Zk0ixKhQLohcvIZt9W7O0SU2ySr-9KfXu6fFgfjPMEHINLAcG1e2QD2qz0W6bz9KbA-S8rk_IBETNs6KqmlMyYc2szAQX4pxchDAwxqDhMCHDQrXeaBWNs9T19KXNOrfDjn7YFbXKup9kTUP0o46jR9ru6euCbtXaYvQJCbsxRvS0d56i_VRWJ3atQhbQBmPXdOeTnY8GwyU569Um4NXfnZL3xcPb_Clbrh6f5_fLTBeMx6yrWdnWWAnVg-gBsOlFhS2WnAEvSlb3hWCAtZjNNBRFWXWaddjVLedVC43gU3Jz9E3RXyOGKAc3epsiZerMU21R8KQqjyrtXQgee7nzZqv8XgKTh1nlIP9mlYdZJYBMsybu7shhqvBt0MugDR5qG486ys6Zfxx-AW37hDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933931843</pqid></control><display><type>article</type><title>Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kim, Seong-Hwan ; Shim, Gyu-In ; Choi, Se-Young</creator><creatorcontrib>Kim, Seong-Hwan ; Shim, Gyu-In ; Choi, Se-Young</creatorcontrib><description>An Nb-doped ZnO nanowall is fabricated by radio-frequency (RF) magnetron sputtering at 250 °C for application in a gas sensor. The fabricated Nb-doped ZnO nanowall is characterized by field emission scanning microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Nb-doped ZnO nanowall is observed to show a predominant exposed polarized (002) plane. The specific surface area is increased relative to that of the parent ZnO nanowall from 9.2 ± 0.42 m2 g−1 to 9.8 ± 0.52 m2 g−1. The segregation of Nb does not occur in the Nb-doped sample observed by TEM; this indicates that the addition of Nb occurs within the solid-solution limit of the ZnO host lattice. The Nb-doped ZnO nanowall gas sensor presents excellent gas sensing properties for acetone and ethanol gases at a relatively low operating temperature. We confirm the effects of Nb-doping on the ZnO nanowall, such as the exposed (002) plane, specific surface area increase, and electronic structural changes. Nb doping of the ZnO host lattice is a promising method that enhances the acetone and ethanol gas-sensing capacity at a relatively low operating temperature. [Display omitted] •Nb-doped ZnO nanowalls were grown by RF magnetron sputtering.•Nb doping increased crystallinity, surface area, &amp; charge carrier concentration.•Doped ZnO showed good sensitivity (resistance changes) to reducing target gases.•Gas sensors of nanowalls showed lower operating temperatures than other sensors did.•Growth &amp; sensing enhancement mechanisms were elucidated.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2016.11.377</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acetone ; Alloys ; Detection ; Doping ; Emission spectroscopy ; Ethanol ; Exposure ; Field emission ; Gas sensors ; High resolution ; Magnetic properties ; Magnetron sputtering ; Nanofabrications ; Nanostructure ; Nanostructured compounds ; Nanostructured materials ; Operating temperature ; Point defects ; Radio frequency ; Scanning microscopy ; Specific surface ; Surface area ; Surfaces and interfaces ; Transition metal alloys and compounds ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of alloys and compounds, 2017-03, Vol.698, p.77-86</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983</citedby><cites>FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983</cites><orcidid>0000-0001-7018-7964 ; 0000-0003-0864-9050 ; 0000-0003-4529-9029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Kim, Seong-Hwan</creatorcontrib><creatorcontrib>Shim, Gyu-In</creatorcontrib><creatorcontrib>Choi, Se-Young</creatorcontrib><title>Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties</title><title>Journal of alloys and compounds</title><description>An Nb-doped ZnO nanowall is fabricated by radio-frequency (RF) magnetron sputtering at 250 °C for application in a gas sensor. The fabricated Nb-doped ZnO nanowall is characterized by field emission scanning microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Nb-doped ZnO nanowall is observed to show a predominant exposed polarized (002) plane. The specific surface area is increased relative to that of the parent ZnO nanowall from 9.2 ± 0.42 m2 g−1 to 9.8 ± 0.52 m2 g−1. The segregation of Nb does not occur in the Nb-doped sample observed by TEM; this indicates that the addition of Nb occurs within the solid-solution limit of the ZnO host lattice. The Nb-doped ZnO nanowall gas sensor presents excellent gas sensing properties for acetone and ethanol gases at a relatively low operating temperature. We confirm the effects of Nb-doping on the ZnO nanowall, such as the exposed (002) plane, specific surface area increase, and electronic structural changes. Nb doping of the ZnO host lattice is a promising method that enhances the acetone and ethanol gas-sensing capacity at a relatively low operating temperature. [Display omitted] •Nb-doped ZnO nanowalls were grown by RF magnetron sputtering.•Nb doping increased crystallinity, surface area, &amp; charge carrier concentration.•Doped ZnO showed good sensitivity (resistance changes) to reducing target gases.•Gas sensors of nanowalls showed lower operating temperatures than other sensors did.•Growth &amp; sensing enhancement mechanisms were elucidated.</description><subject>Acetone</subject><subject>Alloys</subject><subject>Detection</subject><subject>Doping</subject><subject>Emission spectroscopy</subject><subject>Ethanol</subject><subject>Exposure</subject><subject>Field emission</subject><subject>Gas sensors</subject><subject>High resolution</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>Nanofabrications</subject><subject>Nanostructure</subject><subject>Nanostructured compounds</subject><subject>Nanostructured materials</subject><subject>Operating temperature</subject><subject>Point defects</subject><subject>Radio frequency</subject><subject>Scanning microscopy</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Surfaces and interfaces</subject><subject>Transition metal alloys and compounds</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfQQh43jWv2T_Zk0ixKhQLohcvIZt9W7O0SU2ySr-9KfXu6fFgfjPMEHINLAcG1e2QD2qz0W6bz9KbA-S8rk_IBETNs6KqmlMyYc2szAQX4pxchDAwxqDhMCHDQrXeaBWNs9T19KXNOrfDjn7YFbXKup9kTUP0o46jR9ru6euCbtXaYvQJCbsxRvS0d56i_VRWJ3atQhbQBmPXdOeTnY8GwyU569Um4NXfnZL3xcPb_Clbrh6f5_fLTBeMx6yrWdnWWAnVg-gBsOlFhS2WnAEvSlb3hWCAtZjNNBRFWXWaddjVLedVC43gU3Jz9E3RXyOGKAc3epsiZerMU21R8KQqjyrtXQgee7nzZqv8XgKTh1nlIP9mlYdZJYBMsybu7shhqvBt0MugDR5qG486ys6Zfxx-AW37hDI</recordid><startdate>20170325</startdate><enddate>20170325</enddate><creator>Kim, Seong-Hwan</creator><creator>Shim, Gyu-In</creator><creator>Choi, Se-Young</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7018-7964</orcidid><orcidid>https://orcid.org/0000-0003-0864-9050</orcidid><orcidid>https://orcid.org/0000-0003-4529-9029</orcidid></search><sort><creationdate>20170325</creationdate><title>Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties</title><author>Kim, Seong-Hwan ; Shim, Gyu-In ; Choi, Se-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetone</topic><topic>Alloys</topic><topic>Detection</topic><topic>Doping</topic><topic>Emission spectroscopy</topic><topic>Ethanol</topic><topic>Exposure</topic><topic>Field emission</topic><topic>Gas sensors</topic><topic>High resolution</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>Nanofabrications</topic><topic>Nanostructure</topic><topic>Nanostructured compounds</topic><topic>Nanostructured materials</topic><topic>Operating temperature</topic><topic>Point defects</topic><topic>Radio frequency</topic><topic>Scanning microscopy</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Surfaces and interfaces</topic><topic>Transition metal alloys and compounds</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seong-Hwan</creatorcontrib><creatorcontrib>Shim, Gyu-In</creatorcontrib><creatorcontrib>Choi, Se-Young</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seong-Hwan</au><au>Shim, Gyu-In</au><au>Choi, Se-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2017-03-25</date><risdate>2017</risdate><volume>698</volume><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>An Nb-doped ZnO nanowall is fabricated by radio-frequency (RF) magnetron sputtering at 250 °C for application in a gas sensor. The fabricated Nb-doped ZnO nanowall is characterized by field emission scanning microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Nb-doped ZnO nanowall is observed to show a predominant exposed polarized (002) plane. The specific surface area is increased relative to that of the parent ZnO nanowall from 9.2 ± 0.42 m2 g−1 to 9.8 ± 0.52 m2 g−1. The segregation of Nb does not occur in the Nb-doped sample observed by TEM; this indicates that the addition of Nb occurs within the solid-solution limit of the ZnO host lattice. The Nb-doped ZnO nanowall gas sensor presents excellent gas sensing properties for acetone and ethanol gases at a relatively low operating temperature. We confirm the effects of Nb-doping on the ZnO nanowall, such as the exposed (002) plane, specific surface area increase, and electronic structural changes. Nb doping of the ZnO host lattice is a promising method that enhances the acetone and ethanol gas-sensing capacity at a relatively low operating temperature. [Display omitted] •Nb-doped ZnO nanowalls were grown by RF magnetron sputtering.•Nb doping increased crystallinity, surface area, &amp; charge carrier concentration.•Doped ZnO showed good sensitivity (resistance changes) to reducing target gases.•Gas sensors of nanowalls showed lower operating temperatures than other sensors did.•Growth &amp; sensing enhancement mechanisms were elucidated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2016.11.377</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7018-7964</orcidid><orcidid>https://orcid.org/0000-0003-0864-9050</orcidid><orcidid>https://orcid.org/0000-0003-4529-9029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2017-03, Vol.698, p.77-86
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_1933931843
source ScienceDirect Freedom Collection 2022-2024
subjects Acetone
Alloys
Detection
Doping
Emission spectroscopy
Ethanol
Exposure
Field emission
Gas sensors
High resolution
Magnetic properties
Magnetron sputtering
Nanofabrications
Nanostructure
Nanostructured compounds
Nanostructured materials
Operating temperature
Point defects
Radio frequency
Scanning microscopy
Specific surface
Surface area
Surfaces and interfaces
Transition metal alloys and compounds
Transmission electron microscopy
X ray photoelectron spectroscopy
X-ray diffraction
Zinc oxide
Zinc oxides
title Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T05%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Nb-doped%20ZnO%20nanowall%20structure%20by%20RF%20magnetron%20sputter%20for%20enhanced%20gas-sensing%20properties&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kim,%20Seong-Hwan&rft.date=2017-03-25&rft.volume=698&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2016.11.377&rft_dat=%3Cproquest_cross%3E1933931843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-d705b7e68af18f11e9f86ebe530134507f4801e7822c14456dc0ded7b336b1983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1933931843&rft_id=info:pmid/&rfr_iscdi=true