Loading…

Advanced glycation end products inhibit testosterone secretion by rat Leydig cells by inducing oxidative stress and endoplasmic reticulum stress

Diabetes severely impairs male reproduction. The present study assessed the effects and mechanisms of action of advanced glycation end products (AGEs), which play an important role in the development of diabetes complications, on testosterone secretion by rat Leydig cells. Primary rat Leydig cells w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular medicine 2016-08, Vol.38 (2), p.659-665
Main Authors: Zhao, Yun-Tao, Qi, Ya-Wei, Hu, Chuan-Yin, Chen, Shao-Hong, Liu, You
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetes severely impairs male reproduction. The present study assessed the effects and mechanisms of action of advanced glycation end products (AGEs), which play an important role in the development of diabetes complications, on testosterone secretion by rat Leydig cells. Primary rat Leydig cells were cultured and treated with AGEs (25, 50, 100 and 200 µg/ml). Testosterone production induced by human chorionic gonadotropin (hCG) was determined by ELISA. The mRNA and protein expression levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD), which are involved in testosterone biosynthesis, were measured by reverse transcription-quantitative PCR and western blot analysis, respectively. Reactive oxygen species (ROS) production in Leydig cells was measured using the dichlorofluorescein diacetate (DCFH-DA) probe. The expression levels of endoplasmic reticulum stress-related proteins [C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78)] in the Leydig cells were measured by western blot analysis. We found that the AGEs markedly suppressed testosterone production by rat Leydig cells which was induced by hCG in a concentration-dependent manner compared with the control (P
ISSN:1107-3756
1791-244X
DOI:10.3892/ijmm.2016.2645