Loading…
An analytical solution for two and three dimensional nonlinear Burgers' equation
This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions i...
Saved in:
Published in: | Applied Mathematical Modelling 2017-05, Vol.45, p.255-270 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83 |
container_end_page | 270 |
container_issue | |
container_start_page | 255 |
container_title | Applied Mathematical Modelling |
container_volume | 45 |
creator | Gao, Q. Zou, M.Y. |
description | This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods. |
doi_str_mv | 10.1016/j.apm.2016.12.018 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932084070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932084070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouK5-AG8BD55aZ5p0mx7XxX-woAcFbyFNE23pJrtJi-y3N8t68DRveG-Gx4-Qa4QcARd3fa62m7xIMsciBxQnZAYMqqwG_nn6T5-Tixh7ACjTNiNvS0eVU8N-7LQaaPTDNHbeUesDHX988lo6fgdjaNttjIvJSzHn3dA5owK9n8KXCfGWmt2kDpeX5MyqIZqrvzknH48P76vnbP369LJarjPNcDFmiKXm2oIqeLlQRlfaclG3jWhNWdQCOCub0iqBnIm6bljDtFbIKt7ayggr2JzcHP9ug99NJo6y91NI5aLEmhUgOFSQUnhM6eBjDMbKbeg2KuwlgjyAk71M4OQBnMRCJnDsF34WYqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932084070</pqid></control><display><type>article</type><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><source>EBSCOhost Business Source Ultimate</source><source>ScienceDirect Freedom Collection</source><source>Taylor & Francis</source><creator>Gao, Q. ; Zou, M.Y.</creator><creatorcontrib>Gao, Q. ; Zou, M.Y.</creatorcontrib><description>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.12.018</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Applied mathematics ; Burgers equation ; Fluid dynamics ; Infinite series ; Initial conditions ; Numerical methods ; Partial differential equations ; Reynolds number ; Test procedures ; Trigonometric functions</subject><ispartof>Applied Mathematical Modelling, 2017-05, Vol.45, p.255-270</ispartof><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</citedby><cites>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Gao, Q.</creatorcontrib><creatorcontrib>Zou, M.Y.</creatorcontrib><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><title>Applied Mathematical Modelling</title><description>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</description><subject>Applied mathematics</subject><subject>Burgers equation</subject><subject>Fluid dynamics</subject><subject>Infinite series</subject><subject>Initial conditions</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><subject>Test procedures</subject><subject>Trigonometric functions</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouK5-AG8BD55aZ5p0mx7XxX-woAcFbyFNE23pJrtJi-y3N8t68DRveG-Gx4-Qa4QcARd3fa62m7xIMsciBxQnZAYMqqwG_nn6T5-Tixh7ACjTNiNvS0eVU8N-7LQaaPTDNHbeUesDHX988lo6fgdjaNttjIvJSzHn3dA5owK9n8KXCfGWmt2kDpeX5MyqIZqrvzknH48P76vnbP369LJarjPNcDFmiKXm2oIqeLlQRlfaclG3jWhNWdQCOCub0iqBnIm6bljDtFbIKt7ayggr2JzcHP9ug99NJo6y91NI5aLEmhUgOFSQUnhM6eBjDMbKbeg2KuwlgjyAk71M4OQBnMRCJnDsF34WYqM</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Gao, Q.</creator><creator>Zou, M.Y.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><author>Gao, Q. ; Zou, M.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Burgers equation</topic><topic>Fluid dynamics</topic><topic>Infinite series</topic><topic>Initial conditions</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><topic>Test procedures</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Q.</creatorcontrib><creatorcontrib>Zou, M.Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Q.</au><au>Zou, M.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical solution for two and three dimensional nonlinear Burgers' equation</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-05</date><risdate>2017</risdate><volume>45</volume><spage>255</spage><epage>270</epage><pages>255-270</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.apm.2016.12.018</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2017-05, Vol.45, p.255-270 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_1932084070 |
source | EBSCOhost Business Source Ultimate; ScienceDirect Freedom Collection; Taylor & Francis |
subjects | Applied mathematics Burgers equation Fluid dynamics Infinite series Initial conditions Numerical methods Partial differential equations Reynolds number Test procedures Trigonometric functions |
title | An analytical solution for two and three dimensional nonlinear Burgers' equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T22%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20solution%20for%20two%20and%20three%20dimensional%20nonlinear%20Burgers'%20equation&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Gao,%20Q.&rft.date=2017-05&rft.volume=45&rft.spage=255&rft.epage=270&rft.pages=255-270&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.12.018&rft_dat=%3Cproquest_cross%3E1932084070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932084070&rft_id=info:pmid/&rfr_iscdi=true |