Loading…

An analytical solution for two and three dimensional nonlinear Burgers' equation

This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions i...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling 2017-05, Vol.45, p.255-270
Main Authors: Gao, Q., Zou, M.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83
cites cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83
container_end_page 270
container_issue
container_start_page 255
container_title Applied Mathematical Modelling
container_volume 45
creator Gao, Q.
Zou, M.Y.
description This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.
doi_str_mv 10.1016/j.apm.2016.12.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932084070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932084070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouK5-AG8BD55aZ5p0mx7XxX-woAcFbyFNE23pJrtJi-y3N8t68DRveG-Gx4-Qa4QcARd3fa62m7xIMsciBxQnZAYMqqwG_nn6T5-Tixh7ACjTNiNvS0eVU8N-7LQaaPTDNHbeUesDHX988lo6fgdjaNttjIvJSzHn3dA5owK9n8KXCfGWmt2kDpeX5MyqIZqrvzknH48P76vnbP369LJarjPNcDFmiKXm2oIqeLlQRlfaclG3jWhNWdQCOCub0iqBnIm6bljDtFbIKt7ayggr2JzcHP9ug99NJo6y91NI5aLEmhUgOFSQUnhM6eBjDMbKbeg2KuwlgjyAk71M4OQBnMRCJnDsF34WYqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932084070</pqid></control><display><type>article</type><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><source>EBSCOhost Business Source Ultimate</source><source>ScienceDirect Freedom Collection</source><source>Taylor &amp; Francis</source><creator>Gao, Q. ; Zou, M.Y.</creator><creatorcontrib>Gao, Q. ; Zou, M.Y.</creatorcontrib><description>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.12.018</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Applied mathematics ; Burgers equation ; Fluid dynamics ; Infinite series ; Initial conditions ; Numerical methods ; Partial differential equations ; Reynolds number ; Test procedures ; Trigonometric functions</subject><ispartof>Applied Mathematical Modelling, 2017-05, Vol.45, p.255-270</ispartof><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</citedby><cites>FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Gao, Q.</creatorcontrib><creatorcontrib>Zou, M.Y.</creatorcontrib><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><title>Applied Mathematical Modelling</title><description>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</description><subject>Applied mathematics</subject><subject>Burgers equation</subject><subject>Fluid dynamics</subject><subject>Infinite series</subject><subject>Initial conditions</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><subject>Test procedures</subject><subject>Trigonometric functions</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouK5-AG8BD55aZ5p0mx7XxX-woAcFbyFNE23pJrtJi-y3N8t68DRveG-Gx4-Qa4QcARd3fa62m7xIMsciBxQnZAYMqqwG_nn6T5-Tixh7ACjTNiNvS0eVU8N-7LQaaPTDNHbeUesDHX988lo6fgdjaNttjIvJSzHn3dA5owK9n8KXCfGWmt2kDpeX5MyqIZqrvzknH48P76vnbP369LJarjPNcDFmiKXm2oIqeLlQRlfaclG3jWhNWdQCOCub0iqBnIm6bljDtFbIKt7ayggr2JzcHP9ug99NJo6y91NI5aLEmhUgOFSQUnhM6eBjDMbKbeg2KuwlgjyAk71M4OQBnMRCJnDsF34WYqM</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Gao, Q.</creator><creator>Zou, M.Y.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>An analytical solution for two and three dimensional nonlinear Burgers' equation</title><author>Gao, Q. ; Zou, M.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Burgers equation</topic><topic>Fluid dynamics</topic><topic>Infinite series</topic><topic>Initial conditions</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><topic>Test procedures</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Q.</creatorcontrib><creatorcontrib>Zou, M.Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Q.</au><au>Zou, M.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical solution for two and three dimensional nonlinear Burgers' equation</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-05</date><risdate>2017</risdate><volume>45</volume><spage>255</spage><epage>270</epage><pages>255-270</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.apm.2016.12.018</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2017-05, Vol.45, p.255-270
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_1932084070
source EBSCOhost Business Source Ultimate; ScienceDirect Freedom Collection; Taylor & Francis
subjects Applied mathematics
Burgers equation
Fluid dynamics
Infinite series
Initial conditions
Numerical methods
Partial differential equations
Reynolds number
Test procedures
Trigonometric functions
title An analytical solution for two and three dimensional nonlinear Burgers' equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T22%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20solution%20for%20two%20and%20three%20dimensional%20nonlinear%20Burgers'%20equation&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Gao,%20Q.&rft.date=2017-05&rft.volume=45&rft.spage=255&rft.epage=270&rft.pages=255-270&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.12.018&rft_dat=%3Cproquest_cross%3E1932084070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-115c4cf0a2456aec7cf489db8de52980435b5fa8143899b3b3cca1374df7e8f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932084070&rft_id=info:pmid/&rfr_iscdi=true