Loading…

Ejecta Transport, Breakup and Conversion

We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2 , will break up into smaller fragments in situati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamic behavior of materials 2017, Vol.3 (2), p.334-345
Main Authors: Buttler, W. T., Lamoreaux, S. K., Schulze, R. K., Schwarzkopf, J. D., Cooley, J. C., Grover, M., Hammerberg, J. E., La Lone, B. M., Llobet, A., Manzanares, R., Martinez, J. I., Schmidt, D. W., Sheppard, D. G., Stevens, G. D., Turley, W. D., Veeser, L. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3
cites cdi_FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3
container_end_page 345
container_issue 2
container_start_page 334
container_title Journal of dynamic behavior of materials
container_volume 3
creator Buttler, W. T.
Lamoreaux, S. K.
Schulze, R. K.
Schwarzkopf, J. D.
Cooley, J. C.
Grover, M.
Hammerberg, J. E.
La Lone, B. M.
Llobet, A.
Manzanares, R.
Martinez, J. I.
Schmidt, D. W.
Sheppard, D. G.
Stevens, G. D.
Turley, W. D.
Veeser, L. R.
description We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2 , will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He . To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H 2 and He was imaged with visible and infrared (IR) cameras. Because Ce + H 2 ↦ CeH 2 + Δ H , where Δ H is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature T R between the Ce–H 2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH 2 . The experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.
doi_str_mv 10.1007/s40870-017-0114-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925866854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925866854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOIzzAO4KblwYPSc5TdKllhkVBtyM69BLKlO1rUkr-PZmqIgbF-ey-C_wMXaOcI0A-iYQGA0cUMdB4uqILQRmGdeU0vHvT-qUrUJoAUAgGkK9YJfr1lVjkex80YWh9-NVcudd8ToNSdHVSd53n86Hfd-dsZOmeAtu9XOX7Hmz3uUPfPt0_5jfbnklpVFcIjaEUlLc1MjMKCNKyqCutCJFqRZaS5nWJVJWaxKYOlM3SjpQJdRlKZfsYs4dfP8xuTDatp98FystZiI1SpmUogpnVeX7ELxr7OD374X_sgj2wMTOTGxkYg9MrIoeMXtC1HYvzv9J_tf0DXGaYDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925866854</pqid></control><display><type>article</type><title>Ejecta Transport, Breakup and Conversion</title><source>Springer Link</source><creator>Buttler, W. T. ; Lamoreaux, S. K. ; Schulze, R. K. ; Schwarzkopf, J. D. ; Cooley, J. C. ; Grover, M. ; Hammerberg, J. E. ; La Lone, B. M. ; Llobet, A. ; Manzanares, R. ; Martinez, J. I. ; Schmidt, D. W. ; Sheppard, D. G. ; Stevens, G. D. ; Turley, W. D. ; Veeser, L. R.</creator><creatorcontrib>Buttler, W. T. ; Lamoreaux, S. K. ; Schulze, R. K. ; Schwarzkopf, J. D. ; Cooley, J. C. ; Grover, M. ; Hammerberg, J. E. ; La Lone, B. M. ; Llobet, A. ; Manzanares, R. ; Martinez, J. I. ; Schmidt, D. W. ; Sheppard, D. G. ; Stevens, G. D. ; Turley, W. D. ; Veeser, L. R.</creatorcontrib><description>We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2 , will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He . To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H 2 and He was imaged with visible and infrared (IR) cameras. Because Ce + H 2 ↦ CeH 2 + Δ H , where Δ H is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature T R between the Ce–H 2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH 2 . The experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.</description><identifier>ISSN: 2199-7446</identifier><identifier>EISSN: 2199-7454</identifier><identifier>DOI: 10.1007/s40870-017-0114-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Breakup ; Chemical effects ; Chemistry and Materials Science ; Ejecta ; Ejection ; Enthalpy ; Fragmentation ; Fragments ; Gases ; Infrared cameras ; Infrared imaging ; Materials Science ; Metallic Materials ; Piezoelectricity ; Radiance ; Solid Mechanics ; Transducers ; Transportation models</subject><ispartof>Journal of dynamic behavior of materials, 2017, Vol.3 (2), p.334-345</ispartof><rights>Society for Experimental Mechanics, Inc (outside the US) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3</citedby><cites>FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Buttler, W. T.</creatorcontrib><creatorcontrib>Lamoreaux, S. K.</creatorcontrib><creatorcontrib>Schulze, R. K.</creatorcontrib><creatorcontrib>Schwarzkopf, J. D.</creatorcontrib><creatorcontrib>Cooley, J. C.</creatorcontrib><creatorcontrib>Grover, M.</creatorcontrib><creatorcontrib>Hammerberg, J. E.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Llobet, A.</creatorcontrib><creatorcontrib>Manzanares, R.</creatorcontrib><creatorcontrib>Martinez, J. I.</creatorcontrib><creatorcontrib>Schmidt, D. W.</creatorcontrib><creatorcontrib>Sheppard, D. G.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><title>Ejecta Transport, Breakup and Conversion</title><title>Journal of dynamic behavior of materials</title><addtitle>J. dynamic behavior mater</addtitle><description>We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2 , will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He . To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H 2 and He was imaged with visible and infrared (IR) cameras. Because Ce + H 2 ↦ CeH 2 + Δ H , where Δ H is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature T R between the Ce–H 2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH 2 . The experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.</description><subject>Breakup</subject><subject>Chemical effects</subject><subject>Chemistry and Materials Science</subject><subject>Ejecta</subject><subject>Ejection</subject><subject>Enthalpy</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Gases</subject><subject>Infrared cameras</subject><subject>Infrared imaging</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Piezoelectricity</subject><subject>Radiance</subject><subject>Solid Mechanics</subject><subject>Transducers</subject><subject>Transportation models</subject><issn>2199-7446</issn><issn>2199-7454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOIzzAO4KblwYPSc5TdKllhkVBtyM69BLKlO1rUkr-PZmqIgbF-ey-C_wMXaOcI0A-iYQGA0cUMdB4uqILQRmGdeU0vHvT-qUrUJoAUAgGkK9YJfr1lVjkex80YWh9-NVcudd8ToNSdHVSd53n86Hfd-dsZOmeAtu9XOX7Hmz3uUPfPt0_5jfbnklpVFcIjaEUlLc1MjMKCNKyqCutCJFqRZaS5nWJVJWaxKYOlM3SjpQJdRlKZfsYs4dfP8xuTDatp98FystZiI1SpmUogpnVeX7ELxr7OD374X_sgj2wMTOTGxkYg9MrIoeMXtC1HYvzv9J_tf0DXGaYDs</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Buttler, W. T.</creator><creator>Lamoreaux, S. K.</creator><creator>Schulze, R. K.</creator><creator>Schwarzkopf, J. D.</creator><creator>Cooley, J. C.</creator><creator>Grover, M.</creator><creator>Hammerberg, J. E.</creator><creator>La Lone, B. M.</creator><creator>Llobet, A.</creator><creator>Manzanares, R.</creator><creator>Martinez, J. I.</creator><creator>Schmidt, D. W.</creator><creator>Sheppard, D. G.</creator><creator>Stevens, G. D.</creator><creator>Turley, W. D.</creator><creator>Veeser, L. R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Ejecta Transport, Breakup and Conversion</title><author>Buttler, W. T. ; Lamoreaux, S. K. ; Schulze, R. K. ; Schwarzkopf, J. D. ; Cooley, J. C. ; Grover, M. ; Hammerberg, J. E. ; La Lone, B. M. ; Llobet, A. ; Manzanares, R. ; Martinez, J. I. ; Schmidt, D. W. ; Sheppard, D. G. ; Stevens, G. D. ; Turley, W. D. ; Veeser, L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Breakup</topic><topic>Chemical effects</topic><topic>Chemistry and Materials Science</topic><topic>Ejecta</topic><topic>Ejection</topic><topic>Enthalpy</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Gases</topic><topic>Infrared cameras</topic><topic>Infrared imaging</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Piezoelectricity</topic><topic>Radiance</topic><topic>Solid Mechanics</topic><topic>Transducers</topic><topic>Transportation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buttler, W. T.</creatorcontrib><creatorcontrib>Lamoreaux, S. K.</creatorcontrib><creatorcontrib>Schulze, R. K.</creatorcontrib><creatorcontrib>Schwarzkopf, J. D.</creatorcontrib><creatorcontrib>Cooley, J. C.</creatorcontrib><creatorcontrib>Grover, M.</creatorcontrib><creatorcontrib>Hammerberg, J. E.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Llobet, A.</creatorcontrib><creatorcontrib>Manzanares, R.</creatorcontrib><creatorcontrib>Martinez, J. I.</creatorcontrib><creatorcontrib>Schmidt, D. W.</creatorcontrib><creatorcontrib>Sheppard, D. G.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamic behavior of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buttler, W. T.</au><au>Lamoreaux, S. K.</au><au>Schulze, R. K.</au><au>Schwarzkopf, J. D.</au><au>Cooley, J. C.</au><au>Grover, M.</au><au>Hammerberg, J. E.</au><au>La Lone, B. M.</au><au>Llobet, A.</au><au>Manzanares, R.</au><au>Martinez, J. I.</au><au>Schmidt, D. W.</au><au>Sheppard, D. G.</au><au>Stevens, G. D.</au><au>Turley, W. D.</au><au>Veeser, L. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ejecta Transport, Breakup and Conversion</atitle><jtitle>Journal of dynamic behavior of materials</jtitle><stitle>J. dynamic behavior mater</stitle><date>2017</date><risdate>2017</risdate><volume>3</volume><issue>2</issue><spage>334</spage><epage>345</epage><pages>334-345</pages><issn>2199-7446</issn><eissn>2199-7454</eissn><abstract>We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H 2 , will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He . To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H 2 and He was imaged with visible and infrared (IR) cameras. Because Ce + H 2 ↦ CeH 2 + Δ H , where Δ H is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature T R between the Ce–H 2 and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH 2 . The experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40870-017-0114-6</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-7446
ispartof Journal of dynamic behavior of materials, 2017, Vol.3 (2), p.334-345
issn 2199-7446
2199-7454
language eng
recordid cdi_proquest_journals_1925866854
source Springer Link
subjects Breakup
Chemical effects
Chemistry and Materials Science
Ejecta
Ejection
Enthalpy
Fragmentation
Fragments
Gases
Infrared cameras
Infrared imaging
Materials Science
Metallic Materials
Piezoelectricity
Radiance
Solid Mechanics
Transducers
Transportation models
title Ejecta Transport, Breakup and Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T08%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ejecta%20Transport,%20Breakup%20and%20Conversion&rft.jtitle=Journal%20of%20dynamic%20behavior%20of%20materials&rft.au=Buttler,%20W.%20T.&rft.date=2017&rft.volume=3&rft.issue=2&rft.spage=334&rft.epage=345&rft.pages=334-345&rft.issn=2199-7446&rft.eissn=2199-7454&rft_id=info:doi/10.1007/s40870-017-0114-6&rft_dat=%3Cproquest_cross%3E1925866854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3386-311f41334f414f398682b490dc7646457277335db149d74215e8df63e06b0dbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925866854&rft_id=info:pmid/&rfr_iscdi=true