Loading…

Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars

Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degra...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular bioscience 2017-06, Vol.17 (6), p.n/a
Main Authors: Holm, Regina, Weber, Benjamin, Heller, Philipp, Klinker, Kristina, Westmeier, Dana, Docter, Dominic, Stauber, Roland H., Barz, Matthias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623
cites cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623
container_end_page n/a
container_issue 6
container_start_page
container_title Macromolecular bioscience
container_volume 17
creator Holm, Regina
Weber, Benjamin
Heller, Philipp
Klinker, Kristina
Westmeier, Dana
Docter, Dominic
Stauber, Roland H.
Barz, Matthias
description Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 < 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.
doi_str_mv 10.1002/mabi.201600514
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909189386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909189386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EolDYskSR2MCixc7Dsdm1FY9KRSAK68iJJ61LGgc7AcqKT-Ab-RJctZQlqxmNzj0jXYSOCO4SjP3zuUhV18eEYhyRcAvtEUpoJyI82t7sLG6hfWtnGJOYcX8XtXxGOIsY30Pv40VZT8Eq64lSeoOpMCKrwagPUStdejr3xrWaN4X6_vx6AFvp0qpXcEdh3GWknsG718Wigqo-1WdKgr3whmVttGwyVU68vtISJkZIkRYOdZheZu0B2slFYeFwPdvo6erycXDTGd1dDwe9UScL4iDs0JxwzuLA50HAeQYUaBoGacAoiDiWUSgkUEx8SjjGLM5TmeOQUpHGUcoI9YM2Oll5K6NfGrB1MtONKd3LxEU4Ydy5HNVdUZnR1hrIk8qouTCLhOBkWXSyLDrZFO0Cx2ttk85BbvDfZh3AV8CbKmDxjy657fWHf_IfNwiNAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909189386</pqid></control><display><type>article</type><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</creator><creatorcontrib>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</creatorcontrib><description>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 &lt; 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201600514</identifier><identifier>PMID: 28198589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acids - chemistry ; Biodegradability ; Biodegradable Plastics - chemistry ; Biodegradable Plastics - therapeutic use ; block copolypept(o)ides ; Copolymers ; Drug Delivery Systems ; Glutathione ; Glutathione - chemistry ; HEK293 Cells ; HeLa Cells ; Humans ; Light scattering ; Molecular weight ; Nanoparticles ; Nanoparticles - chemistry ; NCA polymerization ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - pharmacology ; Photon correlation spectroscopy ; Polylysine ; Polymerization ; Polymers ; Polymers - chemistry ; polypept(o)ide stars ; redox‐sensitive polypept(o)ide stars ; star polymers ; Toxicity</subject><ispartof>Macromolecular bioscience, 2017-06, Vol.17 (6), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</citedby><cites>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28198589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holm, Regina</creatorcontrib><creatorcontrib>Weber, Benjamin</creatorcontrib><creatorcontrib>Heller, Philipp</creatorcontrib><creatorcontrib>Klinker, Kristina</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 &lt; 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</description><subject>Amino Acids - chemistry</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics - chemistry</subject><subject>Biodegradable Plastics - therapeutic use</subject><subject>block copolypept(o)ides</subject><subject>Copolymers</subject><subject>Drug Delivery Systems</subject><subject>Glutathione</subject><subject>Glutathione - chemistry</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Light scattering</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>NCA polymerization</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Photon correlation spectroscopy</subject><subject>Polylysine</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>polypept(o)ide stars</subject><subject>redox‐sensitive polypept(o)ide stars</subject><subject>star polymers</subject><subject>Toxicity</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EolDYskSR2MCixc7Dsdm1FY9KRSAK68iJJ61LGgc7AcqKT-Ab-RJctZQlqxmNzj0jXYSOCO4SjP3zuUhV18eEYhyRcAvtEUpoJyI82t7sLG6hfWtnGJOYcX8XtXxGOIsY30Pv40VZT8Eq64lSeoOpMCKrwagPUStdejr3xrWaN4X6_vx6AFvp0qpXcEdh3GWknsG718Wigqo-1WdKgr3whmVttGwyVU68vtISJkZIkRYOdZheZu0B2slFYeFwPdvo6erycXDTGd1dDwe9UScL4iDs0JxwzuLA50HAeQYUaBoGacAoiDiWUSgkUEx8SjjGLM5TmeOQUpHGUcoI9YM2Oll5K6NfGrB1MtONKd3LxEU4Ydy5HNVdUZnR1hrIk8qouTCLhOBkWXSyLDrZFO0Cx2ttk85BbvDfZh3AV8CbKmDxjy657fWHf_IfNwiNAQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Holm, Regina</creator><creator>Weber, Benjamin</creator><creator>Heller, Philipp</creator><creator>Klinker, Kristina</creator><creator>Westmeier, Dana</creator><creator>Docter, Dominic</creator><creator>Stauber, Roland H.</creator><creator>Barz, Matthias</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201706</creationdate><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><author>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acids - chemistry</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics - chemistry</topic><topic>Biodegradable Plastics - therapeutic use</topic><topic>block copolypept(o)ides</topic><topic>Copolymers</topic><topic>Drug Delivery Systems</topic><topic>Glutathione</topic><topic>Glutathione - chemistry</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Light scattering</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>NCA polymerization</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Photon correlation spectroscopy</topic><topic>Polylysine</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>polypept(o)ide stars</topic><topic>redox‐sensitive polypept(o)ide stars</topic><topic>star polymers</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holm, Regina</creatorcontrib><creatorcontrib>Weber, Benjamin</creatorcontrib><creatorcontrib>Heller, Philipp</creatorcontrib><creatorcontrib>Klinker, Kristina</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holm, Regina</au><au>Weber, Benjamin</au><au>Heller, Philipp</au><au>Klinker, Kristina</au><au>Westmeier, Dana</au><au>Docter, Dominic</au><au>Stauber, Roland H.</au><au>Barz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2017-06</date><risdate>2017</risdate><volume>17</volume><issue>6</issue><epage>n/a</epage><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 &lt; 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28198589</pmid><doi>10.1002/mabi.201600514</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2017-06, Vol.17 (6), p.n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_journals_1909189386
source Wiley-Blackwell Read & Publish Collection
subjects Amino Acids - chemistry
Biodegradability
Biodegradable Plastics - chemistry
Biodegradable Plastics - therapeutic use
block copolypept(o)ides
Copolymers
Drug Delivery Systems
Glutathione
Glutathione - chemistry
HEK293 Cells
HeLa Cells
Humans
Light scattering
Molecular weight
Nanoparticles
Nanoparticles - chemistry
NCA polymerization
Peptides - chemical synthesis
Peptides - chemistry
Peptides - pharmacology
Photon correlation spectroscopy
Polylysine
Polymerization
Polymers
Polymers - chemistry
polypept(o)ide stars
redox‐sensitive polypept(o)ide stars
star polymers
Toxicity
title Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T13%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Stimuli%E2%80%90Responsive%20Star%E2%80%90Like%20Polypept(o)ides:%20Introducing%20Biodegradable%20PeptoStars&rft.jtitle=Macromolecular%20bioscience&rft.au=Holm,%20Regina&rft.date=2017-06&rft.volume=17&rft.issue=6&rft.epage=n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201600514&rft_dat=%3Cproquest_cross%3E1909189386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909189386&rft_id=info:pmid/28198589&rfr_iscdi=true