Loading…
Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars
Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degra...
Saved in:
Published in: | Macromolecular bioscience 2017-06, Vol.17 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623 |
---|---|
cites | cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Macromolecular bioscience |
container_volume | 17 |
creator | Holm, Regina Weber, Benjamin Heller, Philipp Klinker, Kristina Westmeier, Dana Docter, Dominic Stauber, Roland H. Barz, Matthias |
description | Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 < 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells.
The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells. |
doi_str_mv | 10.1002/mabi.201600514 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909189386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909189386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EolDYskSR2MCixc7Dsdm1FY9KRSAK68iJJ61LGgc7AcqKT-Ab-RJctZQlqxmNzj0jXYSOCO4SjP3zuUhV18eEYhyRcAvtEUpoJyI82t7sLG6hfWtnGJOYcX8XtXxGOIsY30Pv40VZT8Eq64lSeoOpMCKrwagPUStdejr3xrWaN4X6_vx6AFvp0qpXcEdh3GWknsG718Wigqo-1WdKgr3whmVttGwyVU68vtISJkZIkRYOdZheZu0B2slFYeFwPdvo6erycXDTGd1dDwe9UScL4iDs0JxwzuLA50HAeQYUaBoGacAoiDiWUSgkUEx8SjjGLM5TmeOQUpHGUcoI9YM2Oll5K6NfGrB1MtONKd3LxEU4Ydy5HNVdUZnR1hrIk8qouTCLhOBkWXSyLDrZFO0Cx2ttk85BbvDfZh3AV8CbKmDxjy657fWHf_IfNwiNAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909189386</pqid></control><display><type>article</type><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</creator><creatorcontrib>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</creatorcontrib><description>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 < 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells.
The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201600514</identifier><identifier>PMID: 28198589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acids - chemistry ; Biodegradability ; Biodegradable Plastics - chemistry ; Biodegradable Plastics - therapeutic use ; block copolypept(o)ides ; Copolymers ; Drug Delivery Systems ; Glutathione ; Glutathione - chemistry ; HEK293 Cells ; HeLa Cells ; Humans ; Light scattering ; Molecular weight ; Nanoparticles ; Nanoparticles - chemistry ; NCA polymerization ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - pharmacology ; Photon correlation spectroscopy ; Polylysine ; Polymerization ; Polymers ; Polymers - chemistry ; polypept(o)ide stars ; redox‐sensitive polypept(o)ide stars ; star polymers ; Toxicity</subject><ispartof>Macromolecular bioscience, 2017-06, Vol.17 (6), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</citedby><cites>FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28198589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holm, Regina</creatorcontrib><creatorcontrib>Weber, Benjamin</creatorcontrib><creatorcontrib>Heller, Philipp</creatorcontrib><creatorcontrib>Klinker, Kristina</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 < 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells.
The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</description><subject>Amino Acids - chemistry</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics - chemistry</subject><subject>Biodegradable Plastics - therapeutic use</subject><subject>block copolypept(o)ides</subject><subject>Copolymers</subject><subject>Drug Delivery Systems</subject><subject>Glutathione</subject><subject>Glutathione - chemistry</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Light scattering</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>NCA polymerization</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Photon correlation spectroscopy</subject><subject>Polylysine</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>polypept(o)ide stars</subject><subject>redox‐sensitive polypept(o)ide stars</subject><subject>star polymers</subject><subject>Toxicity</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EolDYskSR2MCixc7Dsdm1FY9KRSAK68iJJ61LGgc7AcqKT-Ab-RJctZQlqxmNzj0jXYSOCO4SjP3zuUhV18eEYhyRcAvtEUpoJyI82t7sLG6hfWtnGJOYcX8XtXxGOIsY30Pv40VZT8Eq64lSeoOpMCKrwagPUStdejr3xrWaN4X6_vx6AFvp0qpXcEdh3GWknsG718Wigqo-1WdKgr3whmVttGwyVU68vtISJkZIkRYOdZheZu0B2slFYeFwPdvo6erycXDTGd1dDwe9UScL4iDs0JxwzuLA50HAeQYUaBoGacAoiDiWUSgkUEx8SjjGLM5TmeOQUpHGUcoI9YM2Oll5K6NfGrB1MtONKd3LxEU4Ydy5HNVdUZnR1hrIk8qouTCLhOBkWXSyLDrZFO0Cx2ttk85BbvDfZh3AV8CbKmDxjy657fWHf_IfNwiNAQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Holm, Regina</creator><creator>Weber, Benjamin</creator><creator>Heller, Philipp</creator><creator>Klinker, Kristina</creator><creator>Westmeier, Dana</creator><creator>Docter, Dominic</creator><creator>Stauber, Roland H.</creator><creator>Barz, Matthias</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201706</creationdate><title>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</title><author>Holm, Regina ; Weber, Benjamin ; Heller, Philipp ; Klinker, Kristina ; Westmeier, Dana ; Docter, Dominic ; Stauber, Roland H. ; Barz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acids - chemistry</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics - chemistry</topic><topic>Biodegradable Plastics - therapeutic use</topic><topic>block copolypept(o)ides</topic><topic>Copolymers</topic><topic>Drug Delivery Systems</topic><topic>Glutathione</topic><topic>Glutathione - chemistry</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Light scattering</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>NCA polymerization</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Photon correlation spectroscopy</topic><topic>Polylysine</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>polypept(o)ide stars</topic><topic>redox‐sensitive polypept(o)ide stars</topic><topic>star polymers</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holm, Regina</creatorcontrib><creatorcontrib>Weber, Benjamin</creatorcontrib><creatorcontrib>Heller, Philipp</creatorcontrib><creatorcontrib>Klinker, Kristina</creatorcontrib><creatorcontrib>Westmeier, Dana</creatorcontrib><creatorcontrib>Docter, Dominic</creatorcontrib><creatorcontrib>Stauber, Roland H.</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holm, Regina</au><au>Weber, Benjamin</au><au>Heller, Philipp</au><au>Klinker, Kristina</au><au>Westmeier, Dana</au><au>Docter, Dominic</au><au>Stauber, Roland H.</au><au>Barz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2017-06</date><risdate>2017</risdate><volume>17</volume><issue>6</issue><epage>n/a</epage><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Star‐like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three‐arm star‐like polypept(o)ide (polysarcosine‐block‐polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth‐like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star‐like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N‐carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson‐like molecular weight distributions, and low dispersities (Đ = 1.06–1.15). Star‐like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 < 0.05) as determined by dynamic light scattering (DLS). While star‐like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10–3m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson‐like molecular weight distributions and low dispersities (Đ = 1.05–1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells.
The synthesis of three‐arm polypeptoid and polypept(o)ide star polymers is reported. Incorporation of disulfide bonds between the core and the individual side chains enables degradation of star polymers in the presence of glutathione. The size of star polymers can be adjusted between 4 and 10 nm, yielding core–shell structures well tolerated by HeLa, HEK 293, and DC 2.4 cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28198589</pmid><doi>10.1002/mabi.201600514</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2017-06, Vol.17 (6), p.n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_journals_1909189386 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amino Acids - chemistry Biodegradability Biodegradable Plastics - chemistry Biodegradable Plastics - therapeutic use block copolypept(o)ides Copolymers Drug Delivery Systems Glutathione Glutathione - chemistry HEK293 Cells HeLa Cells Humans Light scattering Molecular weight Nanoparticles Nanoparticles - chemistry NCA polymerization Peptides - chemical synthesis Peptides - chemistry Peptides - pharmacology Photon correlation spectroscopy Polylysine Polymerization Polymers Polymers - chemistry polypept(o)ide stars redox‐sensitive polypept(o)ide stars star polymers Toxicity |
title | Synthesis and Characterization of Stimuli‐Responsive Star‐Like Polypept(o)ides: Introducing Biodegradable PeptoStars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T13%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Stimuli%E2%80%90Responsive%20Star%E2%80%90Like%20Polypept(o)ides:%20Introducing%20Biodegradable%20PeptoStars&rft.jtitle=Macromolecular%20bioscience&rft.au=Holm,%20Regina&rft.date=2017-06&rft.volume=17&rft.issue=6&rft.epage=n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201600514&rft_dat=%3Cproquest_cross%3E1909189386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3734-6f199873293399ce6e6b43b386ea77d54ade60126190087fbdf0466ab75b81623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909189386&rft_id=info:pmid/28198589&rfr_iscdi=true |