Loading…

Stokes flow for a shrinking pore

We consider a sphere with a circular pore embedded in an unbounded viscous fluid, where the rim of the pore moves in such a way that the radius of the sphere is constant. Away from the pore, the surface area stretches or compresses uniformly. An exact form for the axisymmetric velocity field which d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2016-02, Vol.788, p.228-245
Main Authors: Aubin, Christopher A., Ryham, Rolf J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213
cites cdi_FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213
container_end_page 245
container_issue
container_start_page 228
container_title Journal of fluid mechanics
container_volume 788
creator Aubin, Christopher A.
Ryham, Rolf J.
description We consider a sphere with a circular pore embedded in an unbounded viscous fluid, where the rim of the pore moves in such a way that the radius of the sphere is constant. Away from the pore, the surface area stretches or compresses uniformly. An exact form for the axisymmetric velocity field which describes the quasi-static motion of the bulk fluid is calculated. The resulting dissipation function yields an analytical value for the aqueous drag coefficient for the sphere with a shrinking pore. Additionally, we examine the small hole and small angle limits, which converge to the unsteady flow for the expansion of a hole in a plane wall, and for the contraction of a circular disk.
doi_str_mv 10.1017/jfm.2015.699
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884317926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_699</cupid><sourcerecordid>4321457427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213</originalsourceid><addsrcrecordid>eNptkL1OwzAYRS0EEqGw8QCWWEn4Pjvxz4gq_qRKDMBsOaldkjZxsVMh3p5U7cDAdJdz75UOIdcIBQLKu873BQOsCqH1CcmwFDqXoqxOSQbAWI7I4JxcpNQBIActM0LfxrB2ifpN-KY-RGpp-oztsG6HFd2G6C7Jmbeb5K6OOSMfjw_v8-d88fr0Mr9f5A0HNuY1V74stfZCqNpZybQWvuECZMml0E2llGg8c9bVyDhXTqkKK6-0EnYJDPmM3Bx2tzF87VwaTRd2cZguDSpVcpSaiYm6PVBNDClF5802tr2NPwbB7B2YyYHZOzCTgwkvjrjt69guV-7P6n-FX7E8W3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884317926</pqid></control><display><type>article</type><title>Stokes flow for a shrinking pore</title><source>Cambridge University Press</source><creator>Aubin, Christopher A. ; Ryham, Rolf J.</creator><creatorcontrib>Aubin, Christopher A. ; Ryham, Rolf J.</creatorcontrib><description>We consider a sphere with a circular pore embedded in an unbounded viscous fluid, where the rim of the pore moves in such a way that the radius of the sphere is constant. Away from the pore, the surface area stretches or compresses uniformly. An exact form for the axisymmetric velocity field which describes the quasi-static motion of the bulk fluid is calculated. The resulting dissipation function yields an analytical value for the aqueous drag coefficient for the sphere with a shrinking pore. Additionally, we examine the small hole and small angle limits, which converge to the unsteady flow for the expansion of a hole in a plane wall, and for the contraction of a circular disk.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.699</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Energy dissipation ; Fluid mechanics ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2016-02, Vol.788, p.228-245</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213</citedby><cites>FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015006990/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,73317</link.rule.ids></links><search><creatorcontrib>Aubin, Christopher A.</creatorcontrib><creatorcontrib>Ryham, Rolf J.</creatorcontrib><title>Stokes flow for a shrinking pore</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We consider a sphere with a circular pore embedded in an unbounded viscous fluid, where the rim of the pore moves in such a way that the radius of the sphere is constant. Away from the pore, the surface area stretches or compresses uniformly. An exact form for the axisymmetric velocity field which describes the quasi-static motion of the bulk fluid is calculated. The resulting dissipation function yields an analytical value for the aqueous drag coefficient for the sphere with a shrinking pore. Additionally, we examine the small hole and small angle limits, which converge to the unsteady flow for the expansion of a hole in a plane wall, and for the contraction of a circular disk.</description><subject>Energy dissipation</subject><subject>Fluid mechanics</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAYRS0EEqGw8QCWWEn4Pjvxz4gq_qRKDMBsOaldkjZxsVMh3p5U7cDAdJdz75UOIdcIBQLKu873BQOsCqH1CcmwFDqXoqxOSQbAWI7I4JxcpNQBIActM0LfxrB2ifpN-KY-RGpp-oztsG6HFd2G6C7Jmbeb5K6OOSMfjw_v8-d88fr0Mr9f5A0HNuY1V74stfZCqNpZybQWvuECZMml0E2llGg8c9bVyDhXTqkKK6-0EnYJDPmM3Bx2tzF87VwaTRd2cZguDSpVcpSaiYm6PVBNDClF5802tr2NPwbB7B2YyYHZOzCTgwkvjrjt69guV-7P6n-FX7E8W3c</recordid><startdate>20160210</startdate><enddate>20160210</enddate><creator>Aubin, Christopher A.</creator><creator>Ryham, Rolf J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160210</creationdate><title>Stokes flow for a shrinking pore</title><author>Aubin, Christopher A. ; Ryham, Rolf J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Energy dissipation</topic><topic>Fluid mechanics</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubin, Christopher A.</creatorcontrib><creatorcontrib>Ryham, Rolf J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubin, Christopher A.</au><au>Ryham, Rolf J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes flow for a shrinking pore</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-02-10</date><risdate>2016</risdate><volume>788</volume><spage>228</spage><epage>245</epage><pages>228-245</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider a sphere with a circular pore embedded in an unbounded viscous fluid, where the rim of the pore moves in such a way that the radius of the sphere is constant. Away from the pore, the surface area stretches or compresses uniformly. An exact form for the axisymmetric velocity field which describes the quasi-static motion of the bulk fluid is calculated. The resulting dissipation function yields an analytical value for the aqueous drag coefficient for the sphere with a shrinking pore. Additionally, we examine the small hole and small angle limits, which converge to the unsteady flow for the expansion of a hole in a plane wall, and for the contraction of a circular disk.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.699</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-02, Vol.788, p.228-245
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884317926
source Cambridge University Press
subjects Energy dissipation
Fluid mechanics
Velocity
Viscosity
title Stokes flow for a shrinking pore
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes%20flow%20for%20a%20shrinking%20pore&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Aubin,%20Christopher%C2%A0A.&rft.date=2016-02-10&rft.volume=788&rft.spage=228&rft.epage=245&rft.pages=228-245&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.699&rft_dat=%3Cproquest_cross%3E4321457427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-b38f4499f668bea72996fc360743769c5886cf2eaeb12338e88515f8986ad0213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1884317926&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_699&rfr_iscdi=true