Loading…

Replacing SNAP-25b with SNAP-25a expression results in metabolic disease

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the solubleN-ethylmaleimide–sensitive factor attachment protein (SNARE) complex mediating fast Ca2+-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this p...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (31), p.E4326-E4335
Main Authors: Valladolid-Acebes, Ismael, Daraio, Teresa, Brismar, Kerstin, Harkany, Tibor, Ögren, Sven Ove, Hökfelt, Tomas G. M., Bark, Christina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3
cites cdi_FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3
container_end_page E4335
container_issue 31
container_start_page E4326
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Valladolid-Acebes, Ismael
Daraio, Teresa
Brismar, Kerstin
Harkany, Tibor
Ögren, Sven Ove
Hökfelt, Tomas G. M.
Bark, Christina
description Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the solubleN-ethylmaleimide–sensitive factor attachment protein (SNARE) complex mediating fast Ca2+-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b–deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b–deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b–deficient mouse may represent a diabesity model.
doi_str_mv 10.1073/pnas.1511951112
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1702875067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464324</jstor_id><sourcerecordid>26464324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMoEhcuacceJ7YvSFVVaKWKVnycLcfxtl6ycbATCv89Tne7tBxG_pjfe3r2EPKawiEFgUdDb9IhrShVuSh7QhYUFC1rruApWQAwUUrO-AF5kdIaAFQl4Tk5YHUWCM4W5OyLGzpjfX9dfP18fFWyqilu_XhzfzKF-z1El5IPfZHXqRtT4fti40bThM7bovXJmeRekmcr0yX3arcuyfePp99OzsqLy0_nJ8cXpa2oHEuBFhCxEUIyiaucwjSSClczSyUDaHJmhJXIQVurBG0RlePYKCEFMnC4JGrrm27dMDV6iH5j4h8djM_70Ord_Q8_l05OU6Si5qLGrP2w1WZg41rr-jGa7rHFo07vb_R1-KV5hZxhnQ3e7wxi-Dm5NOqNT9Z1neldmJKmAhgoxnLWJXn3H7oOU-zz19xRUlRQz9TRlrIxpBTdah-Ggp4nrOcJ638Tzoq3D9-w5-9HmoFiB8zKvR1lGqk-5cjmZ7zZIus0hvjAgte5z_Ev33Kzqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702875067</pqid></control><display><type>article</type><title>Replacing SNAP-25b with SNAP-25a expression results in metabolic disease</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Valladolid-Acebes, Ismael ; Daraio, Teresa ; Brismar, Kerstin ; Harkany, Tibor ; Ögren, Sven Ove ; Hökfelt, Tomas G. M. ; Bark, Christina</creator><creatorcontrib>Valladolid-Acebes, Ismael ; Daraio, Teresa ; Brismar, Kerstin ; Harkany, Tibor ; Ögren, Sven Ove ; Hökfelt, Tomas G. M. ; Bark, Christina</creatorcontrib><description>Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the solubleN-ethylmaleimide–sensitive factor attachment protein (SNARE) complex mediating fast Ca2+-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b–deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b–deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b–deficient mouse may represent a diabesity model.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1511951112</identifier><identifier>PMID: 26195742</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adipocytes - metabolism ; Adipocytes - pathology ; Adipose Tissue, White - metabolism ; Adipose Tissue, White - pathology ; Adiposity ; Animals ; Biological Sciences ; Blood Glucose - metabolism ; Body Weight ; Dyslipidemias - pathology ; Energy Intake ; Energy Metabolism ; Feeding Behavior ; Female ; Homeostasis ; Hormones ; Hyperglycemia ; Hypertrophy ; Hypothalamus - metabolism ; Insulin - metabolism ; Insulin Secretion ; Leptin - blood ; Lipids ; Liver - metabolism ; Liver - pathology ; Male ; Medicin och hälsovetenskap ; Metabolic Diseases - blood ; Metabolic Diseases - metabolism ; Mice, Obese ; Neurotransmitters ; Phenotype ; PNAS Plus ; Proteins ; Receptors, Leptin - metabolism ; Rodents ; Synaptosomal-Associated Protein 25 - deficiency ; Synaptosomal-Associated Protein 25 - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.E4326-E4335</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 4, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3</citedby><cites>FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464324$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464324$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:131764763$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Valladolid-Acebes, Ismael</creatorcontrib><creatorcontrib>Daraio, Teresa</creatorcontrib><creatorcontrib>Brismar, Kerstin</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><creatorcontrib>Ögren, Sven Ove</creatorcontrib><creatorcontrib>Hökfelt, Tomas G. M.</creatorcontrib><creatorcontrib>Bark, Christina</creatorcontrib><title>Replacing SNAP-25b with SNAP-25a expression results in metabolic disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the solubleN-ethylmaleimide–sensitive factor attachment protein (SNARE) complex mediating fast Ca2+-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b–deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b–deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b–deficient mouse may represent a diabesity model.</description><subject>Adipocytes - metabolism</subject><subject>Adipocytes - pathology</subject><subject>Adipose Tissue, White - metabolism</subject><subject>Adipose Tissue, White - pathology</subject><subject>Adiposity</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood Glucose - metabolism</subject><subject>Body Weight</subject><subject>Dyslipidemias - pathology</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>Feeding Behavior</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Hyperglycemia</subject><subject>Hypertrophy</subject><subject>Hypothalamus - metabolism</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Leptin - blood</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Metabolic Diseases - blood</subject><subject>Metabolic Diseases - metabolism</subject><subject>Mice, Obese</subject><subject>Neurotransmitters</subject><subject>Phenotype</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Receptors, Leptin - metabolism</subject><subject>Rodents</subject><subject>Synaptosomal-Associated Protein 25 - deficiency</subject><subject>Synaptosomal-Associated Protein 25 - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EosvCmRMoEhcuacceJ7YvSFVVaKWKVnycLcfxtl6ycbATCv89Tne7tBxG_pjfe3r2EPKawiEFgUdDb9IhrShVuSh7QhYUFC1rruApWQAwUUrO-AF5kdIaAFQl4Tk5YHUWCM4W5OyLGzpjfX9dfP18fFWyqilu_XhzfzKF-z1El5IPfZHXqRtT4fti40bThM7bovXJmeRekmcr0yX3arcuyfePp99OzsqLy0_nJ8cXpa2oHEuBFhCxEUIyiaucwjSSClczSyUDaHJmhJXIQVurBG0RlePYKCEFMnC4JGrrm27dMDV6iH5j4h8djM_70Ord_Q8_l05OU6Si5qLGrP2w1WZg41rr-jGa7rHFo07vb_R1-KV5hZxhnQ3e7wxi-Dm5NOqNT9Z1neldmJKmAhgoxnLWJXn3H7oOU-zz19xRUlRQz9TRlrIxpBTdah-Ggp4nrOcJ638Tzoq3D9-w5-9HmoFiB8zKvR1lGqk-5cjmZ7zZIus0hvjAgte5z_Ev33Kzqg</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Valladolid-Acebes, Ismael</creator><creator>Daraio, Teresa</creator><creator>Brismar, Kerstin</creator><creator>Harkany, Tibor</creator><creator>Ögren, Sven Ove</creator><creator>Hökfelt, Tomas G. M.</creator><creator>Bark, Christina</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20150804</creationdate><title>Replacing SNAP-25b with SNAP-25a expression results in metabolic disease</title><author>Valladolid-Acebes, Ismael ; Daraio, Teresa ; Brismar, Kerstin ; Harkany, Tibor ; Ögren, Sven Ove ; Hökfelt, Tomas G. M. ; Bark, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adipocytes - metabolism</topic><topic>Adipocytes - pathology</topic><topic>Adipose Tissue, White - metabolism</topic><topic>Adipose Tissue, White - pathology</topic><topic>Adiposity</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood Glucose - metabolism</topic><topic>Body Weight</topic><topic>Dyslipidemias - pathology</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>Feeding Behavior</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Hyperglycemia</topic><topic>Hypertrophy</topic><topic>Hypothalamus - metabolism</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Leptin - blood</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Metabolic Diseases - blood</topic><topic>Metabolic Diseases - metabolism</topic><topic>Mice, Obese</topic><topic>Neurotransmitters</topic><topic>Phenotype</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Receptors, Leptin - metabolism</topic><topic>Rodents</topic><topic>Synaptosomal-Associated Protein 25 - deficiency</topic><topic>Synaptosomal-Associated Protein 25 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valladolid-Acebes, Ismael</creatorcontrib><creatorcontrib>Daraio, Teresa</creatorcontrib><creatorcontrib>Brismar, Kerstin</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><creatorcontrib>Ögren, Sven Ove</creatorcontrib><creatorcontrib>Hökfelt, Tomas G. M.</creatorcontrib><creatorcontrib>Bark, Christina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valladolid-Acebes, Ismael</au><au>Daraio, Teresa</au><au>Brismar, Kerstin</au><au>Harkany, Tibor</au><au>Ögren, Sven Ove</au><au>Hökfelt, Tomas G. M.</au><au>Bark, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replacing SNAP-25b with SNAP-25a expression results in metabolic disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>112</volume><issue>31</issue><spage>E4326</spage><epage>E4335</epage><pages>E4326-E4335</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Reviewers included: J.K.E., University of Texas Southwestern Medical Center; J.M.F., The Rockefeller University; and M.H.T., Institute for Diabetes and Obesity, Helmholtz Center Munich.</notes><notes>Contributed by Tomas G. M. Hökfelt, June 22, 2015 (sent for review February 11, 2015; reviewed by Joel K. Elmquist, Jeffrey M. Friedman, and Matthias H. Tschöp)</notes><notes>Author contributions: I.V.-A. and C.B. designed research; I.V.-A., T.D., and C.B. performed research; K.B., T.H., T.G.M.H., and C.B. contributed new reagents/analytic tools; I.V.-A., T.D., K.B., T.H., S.O.Ö., T.G.M.H., and C.B. analyzed data; and I.V.-A., T.G.M.H., and C.B. wrote the paper.</notes><abstract>Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the solubleN-ethylmaleimide–sensitive factor attachment protein (SNARE) complex mediating fast Ca2+-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b–deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b–deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b–deficient mouse may represent a diabesity model.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26195742</pmid><doi>10.1073/pnas.1511951112</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.E4326-E4335
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_journals_1702875067
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Adipocytes - metabolism
Adipocytes - pathology
Adipose Tissue, White - metabolism
Adipose Tissue, White - pathology
Adiposity
Animals
Biological Sciences
Blood Glucose - metabolism
Body Weight
Dyslipidemias - pathology
Energy Intake
Energy Metabolism
Feeding Behavior
Female
Homeostasis
Hormones
Hyperglycemia
Hypertrophy
Hypothalamus - metabolism
Insulin - metabolism
Insulin Secretion
Leptin - blood
Lipids
Liver - metabolism
Liver - pathology
Male
Medicin och hälsovetenskap
Metabolic Diseases - blood
Metabolic Diseases - metabolism
Mice, Obese
Neurotransmitters
Phenotype
PNAS Plus
Proteins
Receptors, Leptin - metabolism
Rodents
Synaptosomal-Associated Protein 25 - deficiency
Synaptosomal-Associated Protein 25 - metabolism
title Replacing SNAP-25b with SNAP-25a expression results in metabolic disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T17%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replacing%20SNAP-25b%20with%20SNAP-25a%20expression%20results%20in%20metabolic%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Valladolid-Acebes,%20Ismael&rft.date=2015-08-04&rft.volume=112&rft.issue=31&rft.spage=E4326&rft.epage=E4335&rft.pages=E4326-E4335&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1511951112&rft_dat=%3Cjstor_proqu%3E26464324%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-73c0333b778283f957ab817e62c18200b00230f7958dc971d339e43b9787320e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1702875067&rft_id=info:pmid/26195742&rft_jstor_id=26464324&rfr_iscdi=true