Loading…
Stability boundaries for resonant migrating planet pairs
Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The s...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2014-05, Vol.440 (2), p.1753-1762 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893 |
container_end_page | 1762 |
container_issue | 2 |
container_start_page | 1753 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 440 |
creator | Bodman, Eva H. L. Quillen, Alice C. |
description | Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ
a
/τ
e
. The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K
min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K
min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K
min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K
min for Kepler systems without well-constrained eccentricities and found only weak constraints on K. |
doi_str_mv | 10.1093/mnras/stu385 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1519411277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stu385</oup_id><sourcerecordid>3287395641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</originalsourceid><addsrcrecordid>eNp90D1PwzAQgGELgUQpbPyASAwshNq5OLZHVPElVWIAZuuS2JWr1g62M_TfEwgz0y3P3UkvIdeM3jOqYHXwEdMq5REkPyELBg0vK9U0p2RBKfBSCsbOyUVKO0ppDVWzIPI9Y-v2Lh-LNoy-x-hMKmyIRTQpePS5OLhtxOz8thj26E0uBnQxXZIzi_tkrv7mknw-PX6sX8rN2_Pr-mFTdgCQS0sr7HrJsBZCSLSGt8oAGAQubKd6YLWtoe2RgZ1UhZUQqJC30kCHUsGS3Mx3hxi-RpOy3oUx-umlZpypmrFpY1J3s-piSCkaq4foDhiPmlH900b_ttFzm4nfzjyMw__yG50MZ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519411277</pqid></control><display><type>article</type><title>Stability boundaries for resonant migrating planet pairs</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB Electronic Journals Library</source><creator>Bodman, Eva H. L. ; Quillen, Alice C.</creator><creatorcontrib>Bodman, Eva H. L. ; Quillen, Alice C.</creatorcontrib><description>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ
a
/τ
e
. The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K
min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K
min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K
min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K
min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu385</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Equilibrium ; Planets ; Satellites</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2014-05, Vol.440 (2), p.1753-1762</ispartof><rights>2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014</rights><rights>Copyright Oxford University Press, UK May 11, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</citedby><cites>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,1587,27936,27937</link.rule.ids></links><search><creatorcontrib>Bodman, Eva H. L.</creatorcontrib><creatorcontrib>Quillen, Alice C.</creatorcontrib><title>Stability boundaries for resonant migrating planet pairs</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ
a
/τ
e
. The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K
min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K
min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K
min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K
min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</description><subject>Equilibrium</subject><subject>Planets</subject><subject>Satellites</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQgGELgUQpbPyASAwshNq5OLZHVPElVWIAZuuS2JWr1g62M_TfEwgz0y3P3UkvIdeM3jOqYHXwEdMq5REkPyELBg0vK9U0p2RBKfBSCsbOyUVKO0ppDVWzIPI9Y-v2Lh-LNoy-x-hMKmyIRTQpePS5OLhtxOz8thj26E0uBnQxXZIzi_tkrv7mknw-PX6sX8rN2_Pr-mFTdgCQS0sr7HrJsBZCSLSGt8oAGAQubKd6YLWtoe2RgZ1UhZUQqJC30kCHUsGS3Mx3hxi-RpOy3oUx-umlZpypmrFpY1J3s-piSCkaq4foDhiPmlH900b_ttFzm4nfzjyMw__yG50MZ34</recordid><startdate>20140511</startdate><enddate>20140511</enddate><creator>Bodman, Eva H. L.</creator><creator>Quillen, Alice C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140511</creationdate><title>Stability boundaries for resonant migrating planet pairs</title><author>Bodman, Eva H. L. ; Quillen, Alice C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Equilibrium</topic><topic>Planets</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodman, Eva H. L.</creatorcontrib><creatorcontrib>Quillen, Alice C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodman, Eva H. L.</au><au>Quillen, Alice C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability boundaries for resonant migrating planet pairs</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2014-05-11</date><risdate>2014</risdate><volume>440</volume><issue>2</issue><spage>1753</spage><epage>1762</epage><pages>1753-1762</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ
a
/τ
e
. The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K
min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K
min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K
min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K
min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu385</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2014-05, Vol.440 (2), p.1753-1762 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_journals_1519411277 |
source | Oxford University Press Journals All Titles (1996-Current); EZB Electronic Journals Library |
subjects | Equilibrium Planets Satellites |
title | Stability boundaries for resonant migrating planet pairs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T13%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20boundaries%20for%20resonant%20migrating%20planet%20pairs&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Bodman,%20Eva%20H.%20L.&rft.date=2014-05-11&rft.volume=440&rft.issue=2&rft.spage=1753&rft.epage=1762&rft.pages=1753-1762&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu385&rft_dat=%3Cproquest_cross%3E3287395641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1519411277&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stu385&rfr_iscdi=true |