Loading…

Stability boundaries for resonant migrating planet pairs

Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The s...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2014-05, Vol.440 (2), p.1753-1762
Main Authors: Bodman, Eva H. L., Quillen, Alice C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893
cites cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893
container_end_page 1762
container_issue 2
container_start_page 1753
container_title Monthly notices of the Royal Astronomical Society
container_volume 440
creator Bodman, Eva H. L.
Quillen, Alice C.
description Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.
doi_str_mv 10.1093/mnras/stu385
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1519411277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stu385</oup_id><sourcerecordid>3287395641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</originalsourceid><addsrcrecordid>eNp90D1PwzAQgGELgUQpbPyASAwshNq5OLZHVPElVWIAZuuS2JWr1g62M_TfEwgz0y3P3UkvIdeM3jOqYHXwEdMq5REkPyELBg0vK9U0p2RBKfBSCsbOyUVKO0ppDVWzIPI9Y-v2Lh-LNoy-x-hMKmyIRTQpePS5OLhtxOz8thj26E0uBnQxXZIzi_tkrv7mknw-PX6sX8rN2_Pr-mFTdgCQS0sr7HrJsBZCSLSGt8oAGAQubKd6YLWtoe2RgZ1UhZUQqJC30kCHUsGS3Mx3hxi-RpOy3oUx-umlZpypmrFpY1J3s-piSCkaq4foDhiPmlH900b_ttFzm4nfzjyMw__yG50MZ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519411277</pqid></control><display><type>article</type><title>Stability boundaries for resonant migrating planet pairs</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB Electronic Journals Library</source><creator>Bodman, Eva H. L. ; Quillen, Alice C.</creator><creatorcontrib>Bodman, Eva H. L. ; Quillen, Alice C.</creatorcontrib><description>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu385</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Equilibrium ; Planets ; Satellites</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2014-05, Vol.440 (2), p.1753-1762</ispartof><rights>2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014</rights><rights>Copyright Oxford University Press, UK May 11, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</citedby><cites>FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,1587,27936,27937</link.rule.ids></links><search><creatorcontrib>Bodman, Eva H. L.</creatorcontrib><creatorcontrib>Quillen, Alice C.</creatorcontrib><title>Stability boundaries for resonant migrating planet pairs</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</description><subject>Equilibrium</subject><subject>Planets</subject><subject>Satellites</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQgGELgUQpbPyASAwshNq5OLZHVPElVWIAZuuS2JWr1g62M_TfEwgz0y3P3UkvIdeM3jOqYHXwEdMq5REkPyELBg0vK9U0p2RBKfBSCsbOyUVKO0ppDVWzIPI9Y-v2Lh-LNoy-x-hMKmyIRTQpePS5OLhtxOz8thj26E0uBnQxXZIzi_tkrv7mknw-PX6sX8rN2_Pr-mFTdgCQS0sr7HrJsBZCSLSGt8oAGAQubKd6YLWtoe2RgZ1UhZUQqJC30kCHUsGS3Mx3hxi-RpOy3oUx-umlZpypmrFpY1J3s-piSCkaq4foDhiPmlH900b_ttFzm4nfzjyMw__yG50MZ34</recordid><startdate>20140511</startdate><enddate>20140511</enddate><creator>Bodman, Eva H. L.</creator><creator>Quillen, Alice C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140511</creationdate><title>Stability boundaries for resonant migrating planet pairs</title><author>Bodman, Eva H. L. ; Quillen, Alice C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Equilibrium</topic><topic>Planets</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodman, Eva H. L.</creatorcontrib><creatorcontrib>Quillen, Alice C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodman, Eva H. L.</au><au>Quillen, Alice C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability boundaries for resonant migrating planet pairs</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2014-05-11</date><risdate>2014</risdate><volume>440</volume><issue>2</issue><spage>1753</spage><epage>1762</epage><pages>1753-1762</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Convergent migration allows pairs of coplanar planets to become trapped into mean motion resonances. Once in resonance, the planets' eccentricities grow to equilibrium values that depends inversely on the ratio of migration time-scale to the eccentricity damping time-scale, K = τ a /τ e . The stability of a planet pair depends on eccentricity so the pair can become unstable before reaching the equilibrium eccentricities. Using a resonant overlap criterion that depends on eccentricity up to second order, we find a function K min that defines the lowest value for K, as a function of the ratio of total planet mass to stellar mass that allows two convergently migrating planets to remain stable in resonance. We found that for first-order resonance, K min is linear with increasing planet mass and quadratic for second-order resonances. The linear relation continues until the mass approaches a critical mass defined by the 2/7 resonance overlap instability law and K min → ∞. Comparing our analytic boundary with an observed sample of two-planet systems, all but one of the systems with measured eccentricities are well inside the stability region estimated by this model. We calculated K min for Kepler systems without well-constrained eccentricities and found only weak constraints on K.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu385</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2014-05, Vol.440 (2), p.1753-1762
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_1519411277
source Oxford University Press Journals All Titles (1996-Current); EZB Electronic Journals Library
subjects Equilibrium
Planets
Satellites
title Stability boundaries for resonant migrating planet pairs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T13%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20boundaries%20for%20resonant%20migrating%20planet%20pairs&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Bodman,%20Eva%20H.%20L.&rft.date=2014-05-11&rft.volume=440&rft.issue=2&rft.spage=1753&rft.epage=1762&rft.pages=1753-1762&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu385&rft_dat=%3Cproquest_cross%3E3287395641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-f02acd81a47778afe5b9e33ea357fc9d314f43bda13f81a2a277a9a5b8e3ca893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1519411277&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stu385&rfr_iscdi=true