Loading…

Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain

Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1991-09, Vol.88 (17), p.7699-7703
Main Authors: McCormack, W T, Tjoelker, L W, Stella, G, Postema, C E, Thompson, C B
Format: Article
Language:lat ; eng
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-6f3b06b025aea730d63d89e201032832ed73466c401392abcd36067217490e3d3
cites
container_end_page 7703
container_issue 17
container_start_page 7699
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 88
creator McCormack, W T
Tjoelker, L W
Stella, G
Postema, C E
Thompson, C B
description Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) β-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the Vβ-Dβand Dβ-Jβjoints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional Vβ-Dβ-Jβjunctions appear to encode a glycine-containing β-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR β-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line Dβnucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames.
doi_str_mv 10.1073/pnas.88.17.7699
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_88_17_7699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2357759</jstor_id><sourcerecordid>2357759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-6f3b06b025aea730d63d89e201032832ed73466c401392abcd36067217490e3d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEKkNhzQaQV7DK1D-JnSA2VWZokSohVYNYWk5yh7h47NRORuQBeCEehGfCYYZCN6xs6Xznnqt7kuQ5wUuCBTvrrQrLolgSsRS8LB8kC4JLkvKsxA-TBcZUpEVGs8fJkxBuMMZlXuCT5ITwnIq8XCTfq043X8GiTVqBMegaGugH59HPH2nVKW3RSu_BBz1Mb9G5Reu9M-OgnVVemwlVzgbwe2jRKhrWtnFt_F-YqdEW0Gb0Fn3WQxfHDB2gy6mPcHSq2gCqVtcMrdwuhjxNHm2VCfDs-J4mn96vN9VlevXx4kN1fpU2rMyGlG9ZjXmNaa5ACYZbztqiBIoJZrRgFFrBMs6bDBNWUlU3LeOYC0pEPAewlp0m7w5z-7HeQduAHbwysvd6p_wkndLyvmJ1J7-4vcwp42W0vz7avbsdIQxyp0MTz6YsuDFIQX-nzeDZAWy8C8HD9i6CYDn3JufeZFFIIuTcW3S8_Hezv_yhqKi_Ouqz8Y96b8Cb_wJyOxozwLchki8O5E2IRd-hlOViTvoFZBG4Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72067219</pqid></control><display><type>article</type><title>Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>PubMed Central</source><creator>McCormack, W T ; Tjoelker, L W ; Stella, G ; Postema, C E ; Thompson, C B</creator><creatorcontrib>McCormack, W T ; Tjoelker, L W ; Stella, G ; Postema, C E ; Thompson, C B</creatorcontrib><description>Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) β-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the Vβ-Dβand Dβ-Jβjoints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional Vβ-Dβ-Jβjunctions appear to encode a glycine-containing β-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR β-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line Dβnucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.88.17.7699</identifier><identifier>PMID: 1652759</identifier><language>lat ; eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Biological Evolution ; Chick Embryo ; Chickens ; Gene Rearrangement, beta-Chain T-Cell Antigen Receptor ; Genetic Variation ; Glycine ; Major Histocompatibility Complex ; Molecular Sequence Data ; Oligonucleotide Probes ; Protein Conformation ; Receptors, Antigen, T-Cell - genetics ; Sequence Homology, Nucleic Acid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1991-09, Vol.88 (17), p.7699-7703</ispartof><rights>Copyright 1991 The National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-6f3b06b025aea730d63d89e201032832ed73466c401392abcd36067217490e3d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/88/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2357759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2357759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1652759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCormack, W T</creatorcontrib><creatorcontrib>Tjoelker, L W</creatorcontrib><creatorcontrib>Stella, G</creatorcontrib><creatorcontrib>Postema, C E</creatorcontrib><creatorcontrib>Thompson, C B</creatorcontrib><title>Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) β-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the Vβ-Dβand Dβ-Jβjoints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional Vβ-Dβ-Jβjunctions appear to encode a glycine-containing β-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR β-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line Dβnucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biological Evolution</subject><subject>Chick Embryo</subject><subject>Chickens</subject><subject>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor</subject><subject>Genetic Variation</subject><subject>Glycine</subject><subject>Major Histocompatibility Complex</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotide Probes</subject><subject>Protein Conformation</subject><subject>Receptors, Antigen, T-Cell - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEKkNhzQaQV7DK1D-JnSA2VWZokSohVYNYWk5yh7h47NRORuQBeCEehGfCYYZCN6xs6Xznnqt7kuQ5wUuCBTvrrQrLolgSsRS8LB8kC4JLkvKsxA-TBcZUpEVGs8fJkxBuMMZlXuCT5ITwnIq8XCTfq043X8GiTVqBMegaGugH59HPH2nVKW3RSu_BBz1Mb9G5Reu9M-OgnVVemwlVzgbwe2jRKhrWtnFt_F-YqdEW0Gb0Fn3WQxfHDB2gy6mPcHSq2gCqVtcMrdwuhjxNHm2VCfDs-J4mn96vN9VlevXx4kN1fpU2rMyGlG9ZjXmNaa5ACYZbztqiBIoJZrRgFFrBMs6bDBNWUlU3LeOYC0pEPAewlp0m7w5z-7HeQduAHbwysvd6p_wkndLyvmJ1J7-4vcwp42W0vz7avbsdIQxyp0MTz6YsuDFIQX-nzeDZAWy8C8HD9i6CYDn3JufeZFFIIuTcW3S8_Hezv_yhqKi_Ouqz8Y96b8Cb_wJyOxozwLchki8O5E2IRd-hlOViTvoFZBG4Hg</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>McCormack, W T</creator><creator>Tjoelker, L W</creator><creator>Stella, G</creator><creator>Postema, C E</creator><creator>Thompson, C B</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19910901</creationdate><title>Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain</title><author>McCormack, W T ; Tjoelker, L W ; Stella, G ; Postema, C E ; Thompson, C B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-6f3b06b025aea730d63d89e201032832ed73466c401392abcd36067217490e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>lat ; eng</language><creationdate>1991</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biological Evolution</topic><topic>Chick Embryo</topic><topic>Chickens</topic><topic>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor</topic><topic>Genetic Variation</topic><topic>Glycine</topic><topic>Major Histocompatibility Complex</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotide Probes</topic><topic>Protein Conformation</topic><topic>Receptors, Antigen, T-Cell - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCormack, W T</creatorcontrib><creatorcontrib>Tjoelker, L W</creatorcontrib><creatorcontrib>Stella, G</creatorcontrib><creatorcontrib>Postema, C E</creatorcontrib><creatorcontrib>Thompson, C B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCormack, W T</au><au>Tjoelker, L W</au><au>Stella, G</au><au>Postema, C E</au><au>Thompson, C B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1991-09-01</date><risdate>1991</risdate><volume>88</volume><issue>17</issue><spage>7699</spage><epage>7703</epage><pages>7699-7703</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) β-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the Vβ-Dβand Dβ-Jβjoints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional Vβ-Dβ-Jβjunctions appear to encode a glycine-containing β-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR β-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line Dβnucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1652759</pmid><doi>10.1073/pnas.88.17.7699</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1991-09, Vol.88 (17), p.7699-7703
issn 0027-8424
1091-6490
language lat ; eng
recordid cdi_pnas_primary_88_17_7699
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; PubMed Central
subjects Amino Acid Sequence
Animals
Base Sequence
Binding Sites
Biological Evolution
Chick Embryo
Chickens
Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
Genetic Variation
Glycine
Major Histocompatibility Complex
Molecular Sequence Data
Oligonucleotide Probes
Protein Conformation
Receptors, Antigen, T-Cell - genetics
Sequence Homology, Nucleic Acid
title Chicken T-Cell Receptor β-Chain Diversity: An Evolutionarily Conserved Dβ-Encoded Glycine Turn Within the Hypervariable CDR3 Domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chicken%20T-Cell%20Receptor%20%CE%B2-Chain%20Diversity:%20An%20Evolutionarily%20Conserved%20D%CE%B2-Encoded%20Glycine%20Turn%20Within%20the%20Hypervariable%20CDR3%20Domain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McCormack,%20W%20T&rft.date=1991-09-01&rft.volume=88&rft.issue=17&rft.spage=7699&rft.epage=7703&rft.pages=7699-7703&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.88.17.7699&rft_dat=%3Cjstor_pnas_%3E2357759%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-6f3b06b025aea730d63d89e201032832ed73466c401392abcd36067217490e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72067219&rft_id=info:pmid/1652759&rft_jstor_id=2357759&rfr_iscdi=true