Loading…

A General Method for Detecting Rearrangements in a Bacterial Genome

An effective method was developed to monitor genome rearrangement in bacteria. The whole procedure consists of five steps. (i) Genomic DNAs of reference cells and test cells are digested with the same restriction enzyme. (ii) The DNA restriction fragments from the test cells are radioactively labele...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1989-07, Vol.86 (14), p.5507-5511
Main Authors: Au, Lo-Chun, Paul O. P. Ts'o
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-2b236f3bacbabd30b7f5e9a006d34e736e94ec0a91b5255f029099fb553d64cf3
cites
container_end_page 5511
container_issue 14
container_start_page 5507
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Au, Lo-Chun
Paul O. P. Ts'o
description An effective method was developed to monitor genome rearrangement in bacteria. The whole procedure consists of five steps. (i) Genomic DNAs of reference cells and test cells are digested with the same restriction enzyme. (ii) The DNA restriction fragments from the test cells are radioactively labeled. (iii) The labeled DNA fragments of test cells are mixed with unlabeled DNA fragments from reference cells that are 100- to 1000-fold in excess and the mixture is electrophoresed in an agarose gel. (iv) After electrophoresis, DNA fragments are alkali-denatured; this is followed by renaturation in situ in the gel. The labeled rearranged DNA fragments from the test cells will renature much slower, as compared with the nonrearranged fragments, since in this location of the gel these rearranged fragments do not have a counterpart in the driver DNA, which is in excess. (v) The DNA gel is electrophoresed in a second dimension perpendicular to the first dimension after renaturation. The denatured rearranged DNAs are revealed after autoradiography, since single-stranded DNA fragments have higher electrophoretic mobility than double-stranded fragments of the same sizes. This process of detection has been demonstrated in this report by using Escherichia coli HB101 as the reference strain and E. coli HB101 carrying λ phage DNA (1:1 genomic ratio) as the test strain.
doi_str_mv 10.1073/pnas.86.14.5507
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_86_14_5507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>34510</jstor_id><sourcerecordid>34510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-2b236f3bacbabd30b7f5e9a006d34e736e94ec0a91b5255f029099fb553d64cf3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0ECkegRkICbYFItZfx564LinAkASkICUFteb3jy0b7cbF9iPz38ek2BzRQuXi_N34zj5CXFJYUKn66GW1c1mpJxVJKqB6RBQVNSyU0PCYLAFaVtWDiKXkW4w0AaFnDETlikinO9YKszopLHDHYvviC6XpqCz-F4iMmdKkb18U3tCHYcY0DjikW3VjY4oN1CUOXLdk6DficPPG2j_hifo_Jj4vz76tP5dXXy8-rs6vSSUZTyRrGleeNdY1tWg5N5SVqC6BaLrDiCrVAB1bTRjIpPTANWvtGSt4q4Tw_Ju_3czfbZsDW5UQ5t9mEbrDhzky2M38rY3dt1tNPw3SlJMv-d7M_TLdbjMkMXXTY93bEaRtNpaFWgvP_glQKKYQWGTzdgy5MMQb0hzAUzK4fs-vH1MpQYXb9ZMfrP3c48HMhWX876zY62_t8e9fFA6a0zLdRGTuZsd38B_X3P8Zv-z7hr5TJN_8kM_BqD9zENIUDwYWkwO8B0cS5xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15454494</pqid></control><display><type>article</type><title>A General Method for Detecting Rearrangements in a Bacterial Genome</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Au, Lo-Chun ; Paul O. P. Ts'o</creator><creatorcontrib>Au, Lo-Chun ; Paul O. P. Ts'o</creatorcontrib><description>An effective method was developed to monitor genome rearrangement in bacteria. The whole procedure consists of five steps. (i) Genomic DNAs of reference cells and test cells are digested with the same restriction enzyme. (ii) The DNA restriction fragments from the test cells are radioactively labeled. (iii) The labeled DNA fragments of test cells are mixed with unlabeled DNA fragments from reference cells that are 100- to 1000-fold in excess and the mixture is electrophoresed in an agarose gel. (iv) After electrophoresis, DNA fragments are alkali-denatured; this is followed by renaturation in situ in the gel. The labeled rearranged DNA fragments from the test cells will renature much slower, as compared with the nonrearranged fragments, since in this location of the gel these rearranged fragments do not have a counterpart in the driver DNA, which is in excess. (v) The DNA gel is electrophoresed in a second dimension perpendicular to the first dimension after renaturation. The denatured rearranged DNAs are revealed after autoradiography, since single-stranded DNA fragments have higher electrophoretic mobility than double-stranded fragments of the same sizes. This process of detection has been demonstrated in this report by using Escherichia coli HB101 as the reference strain and E. coli HB101 carrying λ phage DNA (1:1 genomic ratio) as the test strain.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.14.5507</identifier><identifier>PMID: 2526339</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Bacteria ; Bacteriophage lambda - genetics ; Bacteriophages ; Biological and medical sciences ; Blotting, Southern - methods ; Chromosome Aberrations ; Chromosomes, Bacterial ; DNA ; DNA probes ; DNA, Bacterial - genetics ; DNA, Bacterial - isolation &amp; purification ; Electrophoresis ; Electrophoresis, Polyacrylamide Gel - methods ; Enzymes ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Gels ; Genes, Bacterial ; Genic rearrangement. Recombination. Transposable element ; Genomes ; Genomics ; Molecular and cellular biology ; Molecular genetics ; Molecular Weight ; Nucleic Acid Denaturation ; Restriction Mapping ; Single stranded DNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-07, Vol.86 (14), p.5507-5511</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-2b236f3bacbabd30b7f5e9a006d34e736e94ec0a91b5255f029099fb553d64cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/34510$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/34510$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6955256$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2526339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Au, Lo-Chun</creatorcontrib><creatorcontrib>Paul O. P. Ts'o</creatorcontrib><title>A General Method for Detecting Rearrangements in a Bacterial Genome</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An effective method was developed to monitor genome rearrangement in bacteria. The whole procedure consists of five steps. (i) Genomic DNAs of reference cells and test cells are digested with the same restriction enzyme. (ii) The DNA restriction fragments from the test cells are radioactively labeled. (iii) The labeled DNA fragments of test cells are mixed with unlabeled DNA fragments from reference cells that are 100- to 1000-fold in excess and the mixture is electrophoresed in an agarose gel. (iv) After electrophoresis, DNA fragments are alkali-denatured; this is followed by renaturation in situ in the gel. The labeled rearranged DNA fragments from the test cells will renature much slower, as compared with the nonrearranged fragments, since in this location of the gel these rearranged fragments do not have a counterpart in the driver DNA, which is in excess. (v) The DNA gel is electrophoresed in a second dimension perpendicular to the first dimension after renaturation. The denatured rearranged DNAs are revealed after autoradiography, since single-stranded DNA fragments have higher electrophoretic mobility than double-stranded fragments of the same sizes. This process of detection has been demonstrated in this report by using Escherichia coli HB101 as the reference strain and E. coli HB101 carrying λ phage DNA (1:1 genomic ratio) as the test strain.</description><subject>Bacteria</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophages</subject><subject>Biological and medical sciences</subject><subject>Blotting, Southern - methods</subject><subject>Chromosome Aberrations</subject><subject>Chromosomes, Bacterial</subject><subject>DNA</subject><subject>DNA probes</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - isolation &amp; purification</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Genes, Bacterial</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Weight</subject><subject>Nucleic Acid Denaturation</subject><subject>Restriction Mapping</subject><subject>Single stranded DNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqFkb1vFDEQxS0ECkegRkICbYFItZfx564LinAkASkICUFteb3jy0b7cbF9iPz38ek2BzRQuXi_N34zj5CXFJYUKn66GW1c1mpJxVJKqB6RBQVNSyU0PCYLAFaVtWDiKXkW4w0AaFnDETlikinO9YKszopLHDHYvviC6XpqCz-F4iMmdKkb18U3tCHYcY0DjikW3VjY4oN1CUOXLdk6DficPPG2j_hifo_Jj4vz76tP5dXXy8-rs6vSSUZTyRrGleeNdY1tWg5N5SVqC6BaLrDiCrVAB1bTRjIpPTANWvtGSt4q4Tw_Ju_3czfbZsDW5UQ5t9mEbrDhzky2M38rY3dt1tNPw3SlJMv-d7M_TLdbjMkMXXTY93bEaRtNpaFWgvP_glQKKYQWGTzdgy5MMQb0hzAUzK4fs-vH1MpQYXb9ZMfrP3c48HMhWX876zY62_t8e9fFA6a0zLdRGTuZsd38B_X3P8Zv-z7hr5TJN_8kM_BqD9zENIUDwYWkwO8B0cS5xA</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>Au, Lo-Chun</creator><creator>Paul O. P. Ts'o</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19890701</creationdate><title>A General Method for Detecting Rearrangements in a Bacterial Genome</title><author>Au, Lo-Chun ; Paul O. P. Ts'o</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-2b236f3bacbabd30b7f5e9a006d34e736e94ec0a91b5255f029099fb553d64cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Bacteria</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophages</topic><topic>Biological and medical sciences</topic><topic>Blotting, Southern - methods</topic><topic>Chromosome Aberrations</topic><topic>Chromosomes, Bacterial</topic><topic>DNA</topic><topic>DNA probes</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - isolation &amp; purification</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Genes, Bacterial</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Weight</topic><topic>Nucleic Acid Denaturation</topic><topic>Restriction Mapping</topic><topic>Single stranded DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Au, Lo-Chun</creatorcontrib><creatorcontrib>Paul O. P. Ts'o</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Au, Lo-Chun</au><au>Paul O. P. Ts'o</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Method for Detecting Rearrangements in a Bacterial Genome</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-07-01</date><risdate>1989</risdate><volume>86</volume><issue>14</issue><spage>5507</spage><epage>5511</epage><pages>5507-5511</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>An effective method was developed to monitor genome rearrangement in bacteria. The whole procedure consists of five steps. (i) Genomic DNAs of reference cells and test cells are digested with the same restriction enzyme. (ii) The DNA restriction fragments from the test cells are radioactively labeled. (iii) The labeled DNA fragments of test cells are mixed with unlabeled DNA fragments from reference cells that are 100- to 1000-fold in excess and the mixture is electrophoresed in an agarose gel. (iv) After electrophoresis, DNA fragments are alkali-denatured; this is followed by renaturation in situ in the gel. The labeled rearranged DNA fragments from the test cells will renature much slower, as compared with the nonrearranged fragments, since in this location of the gel these rearranged fragments do not have a counterpart in the driver DNA, which is in excess. (v) The DNA gel is electrophoresed in a second dimension perpendicular to the first dimension after renaturation. The denatured rearranged DNAs are revealed after autoradiography, since single-stranded DNA fragments have higher electrophoretic mobility than double-stranded fragments of the same sizes. This process of detection has been demonstrated in this report by using Escherichia coli HB101 as the reference strain and E. coli HB101 carrying λ phage DNA (1:1 genomic ratio) as the test strain.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2526339</pmid><doi>10.1073/pnas.86.14.5507</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-07, Vol.86 (14), p.5507-5511
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_86_14_5507
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Bacteria
Bacteriophage lambda - genetics
Bacteriophages
Biological and medical sciences
Blotting, Southern - methods
Chromosome Aberrations
Chromosomes, Bacterial
DNA
DNA probes
DNA, Bacterial - genetics
DNA, Bacterial - isolation & purification
Electrophoresis
Electrophoresis, Polyacrylamide Gel - methods
Enzymes
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Gels
Genes, Bacterial
Genic rearrangement. Recombination. Transposable element
Genomes
Genomics
Molecular and cellular biology
Molecular genetics
Molecular Weight
Nucleic Acid Denaturation
Restriction Mapping
Single stranded DNA
title A General Method for Detecting Rearrangements in a Bacterial Genome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Method%20for%20Detecting%20Rearrangements%20in%20a%20Bacterial%20Genome&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Au,%20Lo-Chun&rft.date=1989-07-01&rft.volume=86&rft.issue=14&rft.spage=5507&rft.epage=5511&rft.pages=5507-5511&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.14.5507&rft_dat=%3Cjstor_pnas_%3E34510%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-2b236f3bacbabd30b7f5e9a006d34e736e94ec0a91b5255f029099fb553d64cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15454494&rft_id=info:pmid/2526339&rft_jstor_id=34510&rfr_iscdi=true