Loading…

Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses

Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-07, Vol.14 (7), p.e0219422-e0219422
Main Authors: Jiang, Xiaojie, Keto-Timonen, Riikka, Skurnik, Mikael, Korkeala, Hannu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443
cites cdi_FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443
container_end_page e0219422
container_issue 7
container_start_page e0219422
container_title PloS one
container_volume 14
creator Jiang, Xiaojie
Keto-Timonen, Riikka
Skurnik, Mikael
Korkeala, Hannu
description Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.
doi_str_mv 10.1371/journal.pone.0219422
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2254752431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592745777</galeid><doaj_id>oai_doaj_org_article_eb30071c5a0c4baebd43938aafe5079a</doaj_id><sourcerecordid>A592745777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZPb7LwIS1vtQrGyXsCnkEnO7KTMJmuSqeu38CObbbelK32QPOT2O_9zSU5RPC_xuKRV-e7CD8GpfrzyDsaYlDUj5EGxX9aUjATB9OGd9V7xJMYLjDmdCPG42KMlmVQTxvaLP3PfA_ItOj6ZHo8av0bzT1PUQW-1ioAW4CAi61Dq8ib4X6nbwD8gROusQqsIg_FpaCDooffRRjT7TEnNKRqcgYC0780hWp0eIh-XPll9iCB1yvkeKWeQX1ujkr0EFFOAGCE-LR61qo_wbDsfFN8-nHw9Oh2dnX-cHU3PRlrUJI0YUS2hjWBYC1pSognjwhAjStyaClqhSMVwWQqojeCVEDXWdd2AmTBRMcboQfHyWneVw5bbYkZJCGcVJyxrHhSza8J4dSFXwS5V-C29svLqwIeFVCFn1IOEhmJclZorrFmjoDGM1nSiVAscV7XKWu-33oZmCUaDS0H1O6K7N852cuEvpRAlF3gT7putQPA_B4hJLm3U0PfKgR-u4uYsZ8k3cb_6B70_uy21UDkB61qf_eqNqJzyOhePV1WVqfE9VB4Gllbnn9fafL5j8HbHIDMJ1mmhhhjl7Mv8_9nz77vs6ztsB6pPXfT9kKx3cRdk16AOPsYA7W2RSyw3jXNTDblpHLltnGz24u4D3RrddAr9C_PHEfI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254752431</pqid></control><display><type>article</type><title>Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jiang, Xiaojie ; Keto-Timonen, Riikka ; Skurnik, Mikael ; Korkeala, Hannu</creator><contributor>Charbit, Alain</contributor><creatorcontrib>Jiang, Xiaojie ; Keto-Timonen, Riikka ; Skurnik, Mikael ; Korkeala, Hannu ; Charbit, Alain</creatorcontrib><description>Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0219422</identifier><identifier>PMID: 31287844</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cold ; Cold shock ; Cold Temperature ; Cold tolerance ; DEAD-box RNA Helicases - genetics ; DNA helicase ; E coli ; Environmental health ; Ethanol ; Ethanol - metabolism ; Food ; Food production ; Food safety ; Foodborne pathogens ; Genes ; Genetic aspects ; Helicases ; Hydrogen-Ion Concentration ; Hygiene ; Identification and classification ; Listeria ; Low temperature ; Medicine and Health Sciences ; Messenger RNA ; Microbial metabolism ; Mutation ; Osmotic Pressure ; Oxidative Stress ; pH effects ; Physical Sciences ; Physiological aspects ; Plasmids ; Polymerase chain reaction ; Proteins ; Pseudotuberculosis ; Reverse transcription ; Ribonucleic acid ; RNA ; RNA helicase ; Shock ; Temperature effects ; Transcription (Genetics) ; Veterinary medicine ; Yersinia ; Yersinia pseudotuberculosis ; Yersinia pseudotuberculosis - genetics ; Yersinia pseudotuberculosis - metabolism</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0219422-e0219422</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Jiang et al 2019 Jiang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443</citedby><cites>FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443</cites><orcidid>0000-0002-4823-9139 ; 0000-0001-8791-9260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2254752431/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2254752431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31287844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Charbit, Alain</contributor><creatorcontrib>Jiang, Xiaojie</creatorcontrib><creatorcontrib>Keto-Timonen, Riikka</creatorcontrib><creatorcontrib>Skurnik, Mikael</creatorcontrib><creatorcontrib>Korkeala, Hannu</creatorcontrib><title>Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.</description><subject>Biology and Life Sciences</subject><subject>Cold</subject><subject>Cold shock</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DNA helicase</subject><subject>E coli</subject><subject>Environmental health</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Food</subject><subject>Food production</subject><subject>Food safety</subject><subject>Foodborne pathogens</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Helicases</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hygiene</subject><subject>Identification and classification</subject><subject>Listeria</subject><subject>Low temperature</subject><subject>Medicine and Health Sciences</subject><subject>Messenger RNA</subject><subject>Microbial metabolism</subject><subject>Mutation</subject><subject>Osmotic Pressure</subject><subject>Oxidative Stress</subject><subject>pH effects</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Pseudotuberculosis</subject><subject>Reverse transcription</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA helicase</subject><subject>Shock</subject><subject>Temperature effects</subject><subject>Transcription (Genetics)</subject><subject>Veterinary medicine</subject><subject>Yersinia</subject><subject>Yersinia pseudotuberculosis</subject><subject>Yersinia pseudotuberculosis - genetics</subject><subject>Yersinia pseudotuberculosis - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZPb7LwIS1vtQrGyXsCnkEnO7KTMJmuSqeu38CObbbelK32QPOT2O_9zSU5RPC_xuKRV-e7CD8GpfrzyDsaYlDUj5EGxX9aUjATB9OGd9V7xJMYLjDmdCPG42KMlmVQTxvaLP3PfA_ItOj6ZHo8av0bzT1PUQW-1ioAW4CAi61Dq8ib4X6nbwD8gROusQqsIg_FpaCDooffRRjT7TEnNKRqcgYC0780hWp0eIh-XPll9iCB1yvkeKWeQX1ujkr0EFFOAGCE-LR61qo_wbDsfFN8-nHw9Oh2dnX-cHU3PRlrUJI0YUS2hjWBYC1pSognjwhAjStyaClqhSMVwWQqojeCVEDXWdd2AmTBRMcboQfHyWneVw5bbYkZJCGcVJyxrHhSza8J4dSFXwS5V-C29svLqwIeFVCFn1IOEhmJclZorrFmjoDGM1nSiVAscV7XKWu-33oZmCUaDS0H1O6K7N852cuEvpRAlF3gT7putQPA_B4hJLm3U0PfKgR-u4uYsZ8k3cb_6B70_uy21UDkB61qf_eqNqJzyOhePV1WVqfE9VB4Gllbnn9fafL5j8HbHIDMJ1mmhhhjl7Mv8_9nz77vs6ztsB6pPXfT9kKx3cRdk16AOPsYA7W2RSyw3jXNTDblpHLltnGz24u4D3RrddAr9C_PHEfI</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Jiang, Xiaojie</creator><creator>Keto-Timonen, Riikka</creator><creator>Skurnik, Mikael</creator><creator>Korkeala, Hannu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4823-9139</orcidid><orcidid>https://orcid.org/0000-0001-8791-9260</orcidid></search><sort><creationdate>20190709</creationdate><title>Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses</title><author>Jiang, Xiaojie ; Keto-Timonen, Riikka ; Skurnik, Mikael ; Korkeala, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biology and Life Sciences</topic><topic>Cold</topic><topic>Cold shock</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DNA helicase</topic><topic>E coli</topic><topic>Environmental health</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Food</topic><topic>Food production</topic><topic>Food safety</topic><topic>Foodborne pathogens</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Helicases</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hygiene</topic><topic>Identification and classification</topic><topic>Listeria</topic><topic>Low temperature</topic><topic>Medicine and Health Sciences</topic><topic>Messenger RNA</topic><topic>Microbial metabolism</topic><topic>Mutation</topic><topic>Osmotic Pressure</topic><topic>Oxidative Stress</topic><topic>pH effects</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Pseudotuberculosis</topic><topic>Reverse transcription</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA helicase</topic><topic>Shock</topic><topic>Temperature effects</topic><topic>Transcription (Genetics)</topic><topic>Veterinary medicine</topic><topic>Yersinia</topic><topic>Yersinia pseudotuberculosis</topic><topic>Yersinia pseudotuberculosis - genetics</topic><topic>Yersinia pseudotuberculosis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiaojie</creatorcontrib><creatorcontrib>Keto-Timonen, Riikka</creatorcontrib><creatorcontrib>Skurnik, Mikael</creatorcontrib><creatorcontrib>Korkeala, Hannu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiaojie</au><au>Keto-Timonen, Riikka</au><au>Skurnik, Mikael</au><au>Korkeala, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0219422</spage><epage>e0219422</epage><pages>e0219422-e0219422</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Competing Interests: The authors have declared that no competing interests exist.</notes><abstract>Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31287844</pmid><doi>10.1371/journal.pone.0219422</doi><tpages>e0219422</tpages><orcidid>https://orcid.org/0000-0002-4823-9139</orcidid><orcidid>https://orcid.org/0000-0001-8791-9260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-07, Vol.14 (7), p.e0219422-e0219422
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2254752431
source Publicly Available Content Database; PubMed Central
subjects Biology and Life Sciences
Cold
Cold shock
Cold Temperature
Cold tolerance
DEAD-box RNA Helicases - genetics
DNA helicase
E coli
Environmental health
Ethanol
Ethanol - metabolism
Food
Food production
Food safety
Foodborne pathogens
Genes
Genetic aspects
Helicases
Hydrogen-Ion Concentration
Hygiene
Identification and classification
Listeria
Low temperature
Medicine and Health Sciences
Messenger RNA
Microbial metabolism
Mutation
Osmotic Pressure
Oxidative Stress
pH effects
Physical Sciences
Physiological aspects
Plasmids
Polymerase chain reaction
Proteins
Pseudotuberculosis
Reverse transcription
Ribonucleic acid
RNA
RNA helicase
Shock
Temperature effects
Transcription (Genetics)
Veterinary medicine
Yersinia
Yersinia pseudotuberculosis
Yersinia pseudotuberculosis - genetics
Yersinia pseudotuberculosis - metabolism
title Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20DEAD-box%20RNA%20helicase%20genes%20in%20the%20growth%20of%20Yersinia%20pseudotuberculosis%20IP32953%20under%20cold,%20pH,%20osmotic,%20ethanol%20and%20oxidative%20stresses&rft.jtitle=PloS%20one&rft.au=Jiang,%20Xiaojie&rft.date=2019-07-09&rft.volume=14&rft.issue=7&rft.spage=e0219422&rft.epage=e0219422&rft.pages=e0219422-e0219422&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0219422&rft_dat=%3Cgale_plos_%3EA592745777%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-42af23b640c63132c2456d2d610fd7ef6a2740116e9d6576690c99bed84674443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254752431&rft_id=info:pmid/31287844&rft_galeid=A592745777&rfr_iscdi=true