Loading…

Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors

Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptiona...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2018-12, Vol.14 (12), p.e1006607-e1006607
Main Authors: Tokuda, Isao T, Ono, Daisuke, Honma, Sato, Honma, Ken-Ichi, Herzel, Hanspeter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3
cites cdi_FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3
container_end_page e1006607
container_issue 12
container_start_page e1006607
container_title PLoS computational biology
container_volume 14
creator Tokuda, Isao T
Ono, Daisuke
Honma, Sato
Honma, Ken-Ichi
Herzel, Hanspeter
description Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co-existing rhythms ("splitting"). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co-culturing slices with rhythmic neonatal wild-type SCNs. These co-culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co-culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.
doi_str_mv 10.1371/journal.pcbi.1006607
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250637447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e7a276d1e854ae5a43040fe4a50fb78</doaj_id><sourcerecordid>2250637447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIfsA_QGCJSy-72PFHkgtStWqhUgUH4Irl2OONV1k72AnV_vt6d9OqRUiWPB6_N34zfkXxjuAloRX5tAlT9KpfDrp1S4KxELh6UZwSzumiorx--SQ-Kc5S2mCcw0a8Lk4o5rQkFJ8Wv1ehgwhe71CwSLuolXHKo9jtxm6bkPNo7AD9WH1DLqF1-AvRg0Ht7pB2foQ49OpAHu8C0mEaeufXyCo9hpjeFK-s6hO8nffz4tf11c_V18Xt9y83q8vbheZNOS5qzGxpgNVG01IwVrPSGmEJobXVtbF1yaBthNatYXmxlgpDjeVNiw2l-XhefDjWHfqQ5DyaJMuSY0ErxqqMuDkiTFAbOUS3VXEng3LykAhxLVUcne5BUqhUWQlDoOZMAVeMYoYtMMWxbas61_o8vza1WzAa_BhV_6zo8xvvOplnJwXFRDR7MRdzgRj-TJBGuXVJQ98rD2HKuvPPkSyd4Az9-A_0_92xI0rHkFIE-yiGYLm3ywNL7u0iZ7tk2vunjTySHvxB7wH2M75x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250637447</pqid></control><display><type>article</type><title>Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Tokuda, Isao T ; Ono, Daisuke ; Honma, Sato ; Honma, Ken-Ichi ; Herzel, Hanspeter</creator><contributor>Ayers, Joseph</contributor><creatorcontrib>Tokuda, Isao T ; Ono, Daisuke ; Honma, Sato ; Honma, Ken-Ichi ; Herzel, Hanspeter ; Ayers, Joseph</creatorcontrib><description>Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co-existing rhythms ("splitting"). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co-culturing slices with rhythmic neonatal wild-type SCNs. These co-culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co-culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006607</identifier><identifier>PMID: 30532130</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arginine Vasopressin - metabolism ; Arginine Vasopressin - physiology ; Biological clocks ; Biology ; Biology and Life Sciences ; Bioluminescence ; Brain research ; Brain slice preparation ; Cell culture ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - physiology ; Circadian rhythms ; Complexity ; Computer and Information Sciences ; Computer simulation ; Coupling ; Coupling factors ; Data analysis ; Empirical analysis ; Gene expression ; Mammals ; Medical research ; Medicine ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Modelling ; Neonates ; Neurons ; Neurons - physiology ; Neuropeptides ; Neuropeptides - metabolism ; Neurosciences ; Organs ; Orthogonal functions ; Oscillators ; Period Circadian Proteins - metabolism ; Physical Sciences ; Physiology ; Polypeptides ; Reporters ; Research and Analysis Methods ; Signal Transduction ; Stochasticity ; Suprachiasmatic nucleus ; Suprachiasmatic Nucleus - physiology ; Synchronization ; Transcription ; University graduates ; Vasoactive Intestinal Peptide - metabolism ; Vasoactive Intestinal Peptide - physiology</subject><ispartof>PLoS computational biology, 2018-12, Vol.14 (12), p.e1006607-e1006607</ispartof><rights>2018 Tokuda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Tokuda et al 2018 Tokuda et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3</citedby><cites>FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3</cites><orcidid>0000-0001-6212-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250637447/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250637447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30532130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ayers, Joseph</contributor><creatorcontrib>Tokuda, Isao T</creatorcontrib><creatorcontrib>Ono, Daisuke</creatorcontrib><creatorcontrib>Honma, Sato</creatorcontrib><creatorcontrib>Honma, Ken-Ichi</creatorcontrib><creatorcontrib>Herzel, Hanspeter</creatorcontrib><title>Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co-existing rhythms ("splitting"). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co-culturing slices with rhythmic neonatal wild-type SCNs. These co-culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co-culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.</description><subject>Animals</subject><subject>Arginine Vasopressin - metabolism</subject><subject>Arginine Vasopressin - physiology</subject><subject>Biological clocks</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Bioluminescence</subject><subject>Brain research</subject><subject>Brain slice preparation</subject><subject>Cell culture</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Complexity</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Coupling factors</subject><subject>Data analysis</subject><subject>Empirical analysis</subject><subject>Gene expression</subject><subject>Mammals</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Modelling</subject><subject>Neonates</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropeptides</subject><subject>Neuropeptides - metabolism</subject><subject>Neurosciences</subject><subject>Organs</subject><subject>Orthogonal functions</subject><subject>Oscillators</subject><subject>Period Circadian Proteins - metabolism</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Polypeptides</subject><subject>Reporters</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Stochasticity</subject><subject>Suprachiasmatic nucleus</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>Synchronization</subject><subject>Transcription</subject><subject>University graduates</subject><subject>Vasoactive Intestinal Peptide - metabolism</subject><subject>Vasoactive Intestinal Peptide - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIfsA_QGCJSy-72PFHkgtStWqhUgUH4Irl2OONV1k72AnV_vt6d9OqRUiWPB6_N34zfkXxjuAloRX5tAlT9KpfDrp1S4KxELh6UZwSzumiorx--SQ-Kc5S2mCcw0a8Lk4o5rQkFJ8Wv1ehgwhe71CwSLuolXHKo9jtxm6bkPNo7AD9WH1DLqF1-AvRg0Ht7pB2foQ49OpAHu8C0mEaeufXyCo9hpjeFK-s6hO8nffz4tf11c_V18Xt9y83q8vbheZNOS5qzGxpgNVG01IwVrPSGmEJobXVtbF1yaBthNatYXmxlgpDjeVNiw2l-XhefDjWHfqQ5DyaJMuSY0ErxqqMuDkiTFAbOUS3VXEng3LykAhxLVUcne5BUqhUWQlDoOZMAVeMYoYtMMWxbas61_o8vza1WzAa_BhV_6zo8xvvOplnJwXFRDR7MRdzgRj-TJBGuXVJQ98rD2HKuvPPkSyd4Az9-A_0_92xI0rHkFIE-yiGYLm3ywNL7u0iZ7tk2vunjTySHvxB7wH2M75x</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tokuda, Isao T</creator><creator>Ono, Daisuke</creator><creator>Honma, Sato</creator><creator>Honma, Ken-Ichi</creator><creator>Herzel, Hanspeter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6212-0022</orcidid></search><sort><creationdate>20181201</creationdate><title>Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors</title><author>Tokuda, Isao T ; Ono, Daisuke ; Honma, Sato ; Honma, Ken-Ichi ; Herzel, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Arginine Vasopressin - metabolism</topic><topic>Arginine Vasopressin - physiology</topic><topic>Biological clocks</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Bioluminescence</topic><topic>Brain research</topic><topic>Brain slice preparation</topic><topic>Cell culture</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Complexity</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Coupling factors</topic><topic>Data analysis</topic><topic>Empirical analysis</topic><topic>Gene expression</topic><topic>Mammals</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Modelling</topic><topic>Neonates</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropeptides</topic><topic>Neuropeptides - metabolism</topic><topic>Neurosciences</topic><topic>Organs</topic><topic>Orthogonal functions</topic><topic>Oscillators</topic><topic>Period Circadian Proteins - metabolism</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Polypeptides</topic><topic>Reporters</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Stochasticity</topic><topic>Suprachiasmatic nucleus</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>Synchronization</topic><topic>Transcription</topic><topic>University graduates</topic><topic>Vasoactive Intestinal Peptide - metabolism</topic><topic>Vasoactive Intestinal Peptide - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokuda, Isao T</creatorcontrib><creatorcontrib>Ono, Daisuke</creatorcontrib><creatorcontrib>Honma, Sato</creatorcontrib><creatorcontrib>Honma, Ken-Ichi</creatorcontrib><creatorcontrib>Herzel, Hanspeter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokuda, Isao T</au><au>Ono, Daisuke</au><au>Honma, Sato</au><au>Honma, Ken-Ichi</au><au>Herzel, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1006607</spage><epage>e1006607</epage><pages>e1006607-e1006607</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><notes>new_version</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Current address: Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan</notes><notes>The authors have declared that no competing interests exist.</notes><abstract>Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co-existing rhythms ("splitting"). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co-culturing slices with rhythmic neonatal wild-type SCNs. These co-culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co-culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30532130</pmid><doi>10.1371/journal.pcbi.1006607</doi><orcidid>https://orcid.org/0000-0001-6212-0022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-12, Vol.14 (12), p.e1006607-e1006607
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250637447
source PubMed (Medline); Publicly Available Content Database
subjects Animals
Arginine Vasopressin - metabolism
Arginine Vasopressin - physiology
Biological clocks
Biology
Biology and Life Sciences
Bioluminescence
Brain research
Brain slice preparation
Cell culture
Circadian Clocks - physiology
Circadian rhythm
Circadian Rhythm - physiology
Circadian rhythms
Complexity
Computer and Information Sciences
Computer simulation
Coupling
Coupling factors
Data analysis
Empirical analysis
Gene expression
Mammals
Medical research
Medicine
Mice
Mice, Inbred C57BL
Mice, Knockout
Modelling
Neonates
Neurons
Neurons - physiology
Neuropeptides
Neuropeptides - metabolism
Neurosciences
Organs
Orthogonal functions
Oscillators
Period Circadian Proteins - metabolism
Physical Sciences
Physiology
Polypeptides
Reporters
Research and Analysis Methods
Signal Transduction
Stochasticity
Suprachiasmatic nucleus
Suprachiasmatic Nucleus - physiology
Synchronization
Transcription
University graduates
Vasoactive Intestinal Peptide - metabolism
Vasoactive Intestinal Peptide - physiology
title Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherency%20of%20circadian%20rhythms%20in%20the%20SCN%20is%20governed%20by%20the%20interplay%20of%20two%20coupling%20factors&rft.jtitle=PLoS%20computational%20biology&rft.au=Tokuda,%20Isao%20T&rft.date=2018-12-01&rft.volume=14&rft.issue=12&rft.spage=e1006607&rft.epage=e1006607&rft.pages=e1006607-e1006607&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006607&rft_dat=%3Cproquest_plos_%3E2250637447%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c592t-804f2de48dc32644842fd6f1138fc8df824eb96ccbd4bd44b36d3df59b0d334b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250637447&rft_id=info:pmid/30532130&rfr_iscdi=true